当前位置: 首页 > news >正文

AdaBoost算法

Boosting是一种集成学习方法,AdaBoost是Boosting算法中的一种具体实现。

Boosting方法的核心思想在于将多个弱分类器组合成一个强分类器。这些弱分类器通常是简单的模型,比如决策树,它们在训练过程中的错误会被后续的弱分类器所修正。Boosting算法通过逐步增加新的弱分类器来提高整体模型的性能,每个新的弱分类器都专注于之前模型分类错误的样本。

AdaBoost(Adaptive Boosting)是Boosting算法家族中的一员,它的特点是使用了指数损失函数(exponential loss function),这种损失函数会给分类错误的样本赋予更大的权重,使得后续的弱分类器更加关注这些难以分类的样本。通过这种方式,AdaBoost能够自适应地调整每个样本的权重,从而提高模型的整体性能。除了AdaBoost,还有其他基于不同损失函数的Boosting算法,如L2Boosting和LogitBoost等。这些算法虽然在具体的实现细节上有所不同,但都遵循了Boosting方法将弱分类器组合成强分类器的基本框架。

Boosting每一个训练器重点关注前一个训练器不足的地方进行训练,通过加权投票的方式,得出预测结果。

12074e165e42446596b05c9341d2a1f1.png

Bagging 和 Boosting

Bagging 通过均匀取样的方式从原始样本集中抽取训练集,而 Boosting 使用全部样本,并在每一轮训练中根据错误率调整样例权重。这意味着 Bagging 的训练过程可以并行进行,因为它的基模型之间是独立的,而 Boosting 通常是串行进行的,因为每个模型都依赖于前一个模型的表现。

Bagging 方法中每个基模型对于最终决策的贡献是相等的,类似于民主投票制,每个模型有一票;而在 Boosting 中,每个基模型的贡献是根据其性能加权的,性能更好的模型会有更大的影响力。

AdaBoost

AdaBoost算法的核心步骤是:

  1. 权重更新:在每一轮迭代中,根据样本的分类结果来更新每个样本的权重。如果一个样本被正确分类,那么它的权重将会降低;如果一个样本被错误分类,那么它的权重将会增加。这样可以使得在后续的迭代中,分类器更加关注那些难以分类的样本。

  2. 弱分类器的选择:在每一轮迭代中,从所有的弱分类器中选择一个最佳的弱分类器。这个最佳的弱分类器是指在当前权重分布下,分类误差最小的那个弱分类器。

  3. 分类误差率较小的弱分类器的权值大,在表决中起较大作用。

AdaBoost 模型公式

faef75d595fb4150873e33cf90d62758.png 

  1. α 为模型的权重,m 为弱学习器数量。
  2. hi(x) 表示弱学习器
  3. H(x) 输出结果大于 0 则归为正类,小于 0 则归为负类。

AdaBoost 构建过程 

SampleFeature (x)Label (y)
11-1
22-1
331
441

初始化
D1​(1)=D1​(2)=D1​(3)=D1​(4)=1/4

第1轮迭代

  1. 训练一个弱分类器 ℎ1​(x),例如 h_1(x) = \sign(x - 1.5)。
  2. 计算错误率 ϵ1​,假设所有样本都被正确分类,则 ϵ1​=0。
  3. 计算权重α1​,由于epsilon1​=0,则α1​=infty。但通常我们会设置一个上限,比如α1​=0.5。
  4. 更新样本权重,由于所有样本都被正确分类,权重保持不变。

第2轮迭代

  1. 训练另一个弱分类器 ℎ2​(x),例如 h_2(x) = \sign(x - 3)。
  2. 计算错误率 ϵ2​,假设样本1和2被正确分类,样本3和4被错误分类,则ϵ2​=21​。
  3. 计算权重α2​,α2​=21​ln(21​2​)=21​ln(4)≈0.693。
  4. 更新样本权重,增加样本3和4的权重,减少样本1和2的权重。

最终分类器

  • 组合弱分类器的预测结果,形成最终的强分类器H(x)。

这个过程会根据迭代次数M 重复进行,直到达到预定的迭代次数或者满足某个停止条件(如错误率达到某个阈值)。

Demo实战 

import pandas as pd
df_wine = pd.read_csv('wine.data')df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols',
'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines',
'Proline']df_wine = df_wine[df_wine['Class label'] != 1]X = df_wine[['Alcohol', 'Hue']]
y = df_wine['Class label']

 划分训练集测试集

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_splitle = LabelEncoder()
y = le.fit_transform(y)
# 划分训练集测试集
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.4,random_state=1)
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifiertree = DecisionTreeClassifier(criterion='entropy',max_depth=1)
ada= AdaBoostClassifier(base_estimator=tree,n_estimators=500,learning_rate=0.1)from sklearn.metrics import accuracy_scoretree = tree.fit(X_train,y_train)
y_train_pre = tree.predict(X_train)
y_test_pre = tree.predict(X_test)
tree_train = accuracy_score(y_train,y_train_pre)
tree_test = accuracy_score(y_test,y_test_pre)
print('Decision tree train/test accuracies %.3f/%.3f' % (tree_train,tree_test))
# 0.845/0.854ada = ada.fit(X_train,y_train)
y_train_pre = ada.predict(X_train)
y_test_pre = ada.predict(X_test)
ada_train = accuracy_score(y_train,y_train_pre)
ada_test = accuracy_score(y_test,y_test_pre)
print('Adaboost train/test accuracies %.3f/%.3f' % (ada_train,ada_test))
# 1/0.875

 AdaBosst的决策区域比单层的决策区域更加复杂。

集成学习与单独的分类器性能比较,集成学习提高了复杂度,但在实践中,需要衡量是否愿意为适度提高预测性能付出更多的计算成本。

AdaBoost算法的总结

AdaBoost的核心思想是通过对错误分类的样本增加权重,使得后续的弱分类器更加关注这些难以分类的样本。通过加权投票的方式,将多个弱分类器的预测结果组合起来,形成一个强分类器。

  1. 初始化:为每个训练样本分配相同的权重。
  2. 迭代训练弱分类器:对于每一轮迭代,训练一个弱分类器,使其在加权训练集上的错误率最小化。
  3. 计算弱分类器权重:根据弱分类器在加权训练集上的错误率,计算其权重。错误率越低,权重越高。
  4. 更新样本权重:根据弱分类器的表现,更新样本权重。被错误分类的样本权重增加,正确分类的样本权重减少。
  5. 构建最终分类器:将所有弱分类器的预测结果按照其权重进行加权求和,形成最终的强分类器。

bb0366bb99fc4830b3d164a891213774.png

 

应用领域

AdaBoost算法广泛应用于各种机器学习任务,包括图像识别、文本分类、医学诊断等领域。

优点

  • 提高模型的性能:AdaBoost可以显著提高弱分类器的性能,使其成为一个强大的分类器。
  • 鲁棒性:AdaBoost对于过拟合具有很好的鲁棒性。
  • 灵活性:可以与各种类型的弱分类器结合使用。

缺点

  • 对噪声敏感:如果训练数据包含噪声,AdaBoost可能会给噪声样本分配较高的权重,从而影响模型的性能。
  • 长时间训练:对于大规模数据集,AdaBoost的训练时间可能会很长。 

 

相关文章:

AdaBoost算法

Boosting是一种集成学习方法,AdaBoost是Boosting算法中的一种具体实现。 Boosting方法的核心思想在于将多个弱分类器组合成一个强分类器。这些弱分类器通常是简单的模型,比如决策树,它们在训练过程中的错误会被后续的弱分类器所修正。Boosti…...

基于 elasticsearch v8 的 CRUD 操作及测试用例

基于 elasticsearch v8 的 CRUD 操作及测试用例 https://github.com/chenshijian73-qq/go-es/tree/main...

深度学习的新进展:解析技术演进与应用前景

深度学习的新进展:解析技术演进与应用前景 深度学习,作为人工智能领域的一颗璀璨明珠,一直以来都在不断刷新我们对技术和未来的认知。随着时间的推移,深度学习不断迎来新的进展,这不仅推动了技术的演进,也…...

【第二届 Runway短视频创作大赛】——截至日期2024年03月01日

短视频创作大赛 关于AI Film Festival竞赛概况参加资格报名期间报名方法 提交要求奖品附录 关于AI Film Festival 2022年成立的AIFF是一个融合了最新AI技术于电影制作中的艺术和艺术家节日,让我们得以一窥新创意时代的风采。从众多参赛作品中…...

UniApp 快速上手与深度学习指南

一、UniApp 简介 UniApp 是中国DCloud公司研发的一款创新的跨平台应用开发框架,它基于广受欢迎的前端开发库Vue.js,旨在解决多端适配和快速开发的问题。通过UniApp,开发者能够采用一套统一的代码结构、语法和API来构建应用程序,从而实现真正意义上的“一次编写,到处运行”…...

10个简单有效的编辑PDF文件工具分享

10个编辑PDF文件工具作为作家、编辑或专业人士,您可能经常发现自己在处理 PDF 文件。无论您是审阅文档、创建报告还是与他人共享工作,拥有一个可靠的 PDF 编辑器供您使用都非常重要。 10个简单适用的编辑PDF文件工具 在本文中,我们将介绍当今…...

电力负荷预测 | 基于GRU门控循环单元的深度学习电力负荷预测,含预测未来(Python)

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 电力负荷预测 | 基于GRU门控循环单元的深度学习电力负荷预测,含预测未来(Python&...

vue 实现 手机号中间4位分格输入框(暂无选中标识

vue 实现 手机号中间4位分格输入框 效果图 <!--4位分格输入框--> <!--<template><div><div style"display: flex;"><div class"phone-input"><inputv-for"(digit, index) in digits":key"index"…...

#免费 苹果M系芯片Macbook电脑MacOS使用Bash脚本写入(读写)NTFS硬盘教程

Mac电脑苹果芯片读写NTFS硬盘bash脚本 &#xff08;ntfs.sh脚本内容在本文最后面&#xff09; ntfs.sh脚本可以将Mac系统(苹果M系芯片)上的NTFS硬盘改成可读写的挂载方式&#xff0c;从而可以直接往NTFS硬盘写入数据。此脚本免费&#xff0c;使用过程中无需下载任何收费软件。…...

PPT录屏功能在哪?一键快速找到它!

在现代办公环境中&#xff0c;ppt的录屏功能日益受到关注&#xff0c;它不仅能帮助我们记录演示文稿的播放过程&#xff0c;还能将操作过程、游戏等内容完美录制下来。可是很多人不知道ppt录屏功能在哪&#xff0c;本文将为您介绍ppt录屏的打开方法&#xff0c;以帮助读者更好地…...

Linux下的多线程

前面学习了进程、文件等概念&#xff0c;接下里为大家引入线程的概念 多线程 线程是什么&#xff1f;为什么要有线程&#xff1f;线程的优缺点Linux线程操作线程创建线程等待线程终止线程分离 线程间的私有和共享数据理解线程库和线程id深刻理解Linux多线程&#xff08;重点&a…...

Nginx+React在Docker中实现项目部署

一、引言 Nginx 是一个高性能的 HTTP 和反向代理服务器&#xff0c;也能够处理 IMAP/POP3/SMTP 服务&#xff0c;由 Igor Sysoev 开发并在 2004 年首次公开发布。它以处理静态内容、提供反向代理服务以及其高稳定性、低资源消耗而广受欢迎。Nginx 能够通过非阻塞方式处理多个连…...

Centos 7.5 安装 NVM 详细步骤

NVM&#xff08;Node Version Manager&#xff09;是一个用于管理Node.js版本的工具&#xff0c;它可以让你轻松地在多个版本之间切换。NVM 通过下载和管理 Node.js 的多个版本&#xff0c;为用户提供了一种灵活的方式来使用不同版本的 Node.js。如果你需要更多关于NVM的信息&a…...

【python】绘制春节烟花

一、Pygame库春节烟花示例 下面是一个使用Pygame实现的简单春节烟花效果的示例代码。请注意&#xff0c;运行下面的代码之前&#xff0c;请确保计算机上已经安装了Pygame库。 import pygame import random import math from pygame.locals import *# 初始化pygame pygame.ini…...

ChatPromptTemplate和AI Message的用法

ChatPromptTemplate的用法 用法1&#xff1a; from langchain.chains import LLMChain from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_community.tools.tavily_search import TavilySear…...

Terraform实战(三)-在AWS上尝试Terraform的Vault Provider

使用自Terraform 0.8起添加的Vault Provider后&#xff0c;aws云基础设施尝试从Vault而不是tfvars或环境变量中读取AWS凭证。 1 什么是vault&#xff1f; vault是一种由Hashicorp发布的用于管理机密信息的工具。 2 aws使用Terraform的Vault Provider 2.1 创建静态密钥 以开…...

【Nicn的刷题日常】之有序序列合并

1.题目描述 描述 输入两个升序排列的序列&#xff0c;将两个序列合并为一个有序序列并输出。 数据范围&#xff1a; 1≤&#xfffd;,&#xfffd;≤1000 1≤n,m≤1000 &#xff0c; 序列中的值满足 0≤&#xfffd;&#xfffd;&#xfffd;≤30000 0≤val≤30000 输入描述…...

PostgreSql与Postgis安装

POstgresql安装 1.登录官网 PostgreSQL: Linux downloads (Red Hat family) 2.选择版本 3.安装 ### 源 yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm ### 客户端 yum install postgresql14 ###…...

【Spring连载】使用Spring Data访问Redis(九)----Redis流 Streams

【Spring连载】使用Spring Data访问Redis&#xff08;九&#xff09;----Redis流 Streams 一、追加Appending二、消费Consuming2.1 同步接收Synchronous reception2.2 通过消息监听器容器进行异步接收Asynchronous reception through Message Listener Containers2.2.1 命令式I…...

MySQL:从基础到实践(简单操作实例)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 下载前言一、MySQL是什么&#xff1f;二、使用步骤1.引入库2.读入数据 提交事务查询数据获取查询结果总结 下载 点击下载提取码888999 前言 在现代信息技术的世界…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...