改进神经网络
Improve NN
文章目录
- Improve NN
- train/dev/test set
- Bias/Variance
- basic recipe
- Regularization
- Logistic Regression
- Neural network
- other ways
- optimization problem
- Normalizing inputs
- vanishing/exploding gradients
- weight initialize
- gradient check
- Numerical approximation
- grad check
train/dev/test set
0.7/0/0.3 0.6.0.2.0.2 -> 100-10000
0.98/0.01/0.01 … -> big data
Bias/Variance
偏差度量的是单个模型的学习能力,而方差度量的是同一个模型在不同数据集上的稳定性。
high variance ->high dev set error
high bias ->high train set error
basic recipe
high bias -> bigger network / train longer / more advanced optimization algorithms / NN architectures
high variance -> more data / regularization / NN architecture
Regularization
Logistic Regression
L 2 r e g u l a r i z a t i o n : m i n J ( w , b ) → J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∥ w ∥ 2 2 L2\;\; regularization:\\min\mathcal{J}(w,b)\rightarrow J(w,b)=\frac{1}{m}\sum_{i=1}^m\mathcal{L}(\hat y^{(i)},y^{(i)})+\frac{\lambda}{2m}\Vert w\Vert_2^2 L2regularization:minJ(w,b)→J(w,b)=m1i=1∑mL(y^(i),y(i))+2mλ∥w∥22
Neural network
F r o b e n i u s n o r m ∥ w [ l ] ∥ F 2 = ∑ i = 1 n [ l ] ∑ j = 1 n [ l − 1 ] ( w i , j [ l ] ) 2 D r o p o u t r e g u l a r i z a t i o n : d 3 = n p . r a n d m . r a n d ( a 3. s h a p e . s h a p e [ 0 ] , a 3. s h a p e [ 1 ] < k e e p . p r o b ) a 3 = n p . m u l t i p l y ( a 3 , d 3 ) a 3 / = k e e p . p r o b Frobenius\;\; norm\\ \Vert w^{[l]}\Vert^2_F=\sum_{i=1}^{n^{[l]}}\sum_{j=1}^{n^{[l-1]}}(w_{i,j}^{[l]})^2\\\\ Dropout\;\; regularization:\\ d3=np.randm.rand(a3.shape.shape[0],a3.shape[1]<keep.prob)\\ a3=np.multiply(a3,d3)\\ a3/=keep.prob Frobeniusnorm∥w[l]∥F2=i=1∑n[l]j=1∑n[l−1](wi,j[l])2Dropoutregularization:d3=np.randm.rand(a3.shape.shape[0],a3.shape[1]<keep.prob)a3=np.multiply(a3,d3)a3/=keep.prob
other ways
- early stopping
- data augmentation
optimization problem
speed up the training of your neural network
Normalizing inputs
- subtract mean
μ = 1 m ∑ i = 1 m x ( i ) x : = x − μ \mu =\frac{1}{m}\sum _{i=1}^{m}x^{(i)}\\ x:=x-\mu μ=m1i=1∑mx(i)x:=x−μ
- normalize variance
σ 2 = 1 m ∑ i = 1 m ( x ( i ) ) 2 x / = σ \sigma ^2=\frac{1}{m}\sum_{i=1}^m(x^{(i)})^2\\ x/=\sigma σ2=m1i=1∑m(x(i))2x/=σ
vanishing/exploding gradients
y = w [ l ] w [ l − 1 ] . . . w [ 2 ] w [ 1 ] x w [ l ] > I → ( w [ l ] ) L → ∞ w [ l ] < I → ( w [ l ] ) L → 0 y=w^{[l]}w^{[l-1]}...w^{[2]}w^{[1]}x\\ w^{[l]}>I\rightarrow (w^{[l]})^L\rightarrow\infty \\w^{[l]}<I\rightarrow (w^{[l]})^L\rightarrow0 y=w[l]w[l−1]...w[2]w[1]xw[l]>I→(w[l])L→∞w[l]<I→(w[l])L→0
weight initialize
v a r ( w ) = 1 n ( l − 1 ) w [ l ] = n p . r a n d o m . r a n d n ( s h a p e ) ∗ n p . s q r t ( 1 n ( l − 1 ) ) var(w)=\frac{1}{n^{(l-1)}}\\ w^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{(l-1)}}) var(w)=n(l−1)1w[l]=np.random.randn(shape)∗np.sqrt(n(l−1)1)
gradient check
Numerical approximation
f ( θ ) = θ 3 f ′ ( θ ) = f ( θ + ε ) − f ( θ − ε ) 2 ε f(\theta)=\theta^3\\ f'(\theta)=\frac{f(\theta+\varepsilon)-f(\theta-\varepsilon)}{2\varepsilon} f(θ)=θ3f′(θ)=2εf(θ+ε)−f(θ−ε)
grad check
d θ a p p r o x [ i ] = J ( θ 1 , . . . θ i + ε . . . ) − J ( θ 1 , . . . θ i − ε . . . ) 2 ε = d θ [ i ] c h e c k : ∥ d θ a p p r o x − d θ ∥ 2 ∥ d θ a p p r o x ∥ 2 + ∥ d θ ∥ 2 < 1 0 − 7 d\theta_{approx}[i]=\frac{J(\theta_1,...\theta_i+\varepsilon...)-J(\theta_1,...\theta_i-\varepsilon...)}{2\varepsilon}=d\theta[i]\\ check:\frac{\Vert d\theta_{approx}-d\theta\Vert_2}{\Vert d\theta_{approx}\Vert_2+\Vert d\theta\Vert_2}<10^{-7} dθapprox[i]=2εJ(θ1,...θi+ε...)−J(θ1,...θi−ε...)=dθ[i]check:∥dθapprox∥2+∥dθ∥2∥dθapprox−dθ∥2<10−7
相关文章:

改进神经网络
Improve NN 文章目录 Improve NNtrain/dev/test setBias/Variancebasic recipeRegularizationLogistic RegressionNeural networkother ways optimization problemNormalizing inputsvanishing/exploding gradientsweight initializegradient checkNumerical approximationgrad…...

HarmonyOS 开发学习笔记
HarmonyOS 开发学习笔记 一、开发准备1.1、了解ArkTs语言1.2、TypeScript语法1.2.1、变量声明1.2.2、条件控制1.2.3、函数1.2.4、类和接口1.2.5、模块开发 1.3、快速入门 二、ArkUI组件2.1、Image组件2.2、Text文本显示组件2.3、TextInput文本输入框组件2.4、Button按钮组件2.5…...

maven java 如何打纯源码zip包
一、背景 打纯源码包给第三方进行安全漏洞扫描 二、maven插件 项目中加入下面的maven 插件 <!-- 要将源码放上去,需要加入这个插件 --><plugin><artifactId>maven-source-plugin</artifactId><version>2.4</version><con…...

Altium Designer(AD)原理图库添加阵列管脚图文教程及视频演示
🏡《专栏目录》 目录 视频演示1,概述2,添加方法3,总结视频演示 Altium Designer(AD24)原理图库添加阵列管脚 欢迎点击浏览更多高清视频演示 1,概述...

P3647 题解
文章目录 P3647 题解OverviewDescriptionSolutionLemmaProof Main Code P3647 题解 Overview 很好的题,但是难度较大。 模拟小数据!——【数据删除】 Description 给定一颗树,有边权,已知这棵树是由这两个操作得到的࿱…...

Vivado Tri-MAC IP的例化配置(三速以太网IP)
目录 1 Tri-MAC IP使用RGMII接口的例化配置1.1 Data Rate1.2 interface配置1.3 Shared Logic配置1.4 Features 2 配置完成IP例化视图 1 Tri-MAC IP使用RGMII接口的例化配置 在网络设计中,使用的IP核一般为三速以太网IP核,使用时在大多数场景下为配置为三…...

交友系统---让陌生人变成熟悉人的过程。APP小程序H5三端源码交付,支持二开。
随着社交网络的发展和普及,人们之间的社交模式正在发生着深刻的变革。传统的线下交友方式已经逐渐被线上交友取而代之。而同城交友正是这一趋势的产物,它利用移动互联网的便利性,将同城内的人们连接在一起,打破了时空的限制&#…...

uni-app 经验分享,从入门到离职(三)——关于 uni-app 生命周期快速了解上手
文章目录 📋前言⏬关于专栏 🎯什么是生命周期🧩应用生命周期📌 关于 App.vue/App.uvue 🧩页面生命周期📌关于 onShow 与 onLoad 的区别 🧩组件生命周期 📝最后 📋前言 这…...

PostgreSQL 与 MySQL 相比,优势何在?
我们将通过一张对比表格详细列出 PostgreSQL 与 MySQL 在不同方面的对比: 对比表格 特性/数据库PostgreSQLMySQL数据类型支持支持JSON/JSONB、数组、区间等高级数据类型基本数据类型支持,JSON支持较普通遵循SQL标准更严格遵循,支持复杂查询…...

Linux(三)--文件系统
Linux命令简介 [rootlocalhost ~]# 表示 Linux 系统的命令提示符。 []:这是提示符的分隔符号,没有特殊含义。 root:显示的是当前的登录用户,笔者现在使用的是 root 用户登录。 :分隔符号,没有特殊含义。 l…...

DC-8靶机渗透详细流程
信息收集: 1.存活扫描: arp-scan -I eth0 -l └─# arp-scan -I eth0 -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:dd:ee:6a, IPv4: 192.168.10.129 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192.168.10…...

SolidWorks学习笔记——入门知识2
目录 建出第一个模型 1、建立草图 2、选取中心线 3、草图绘制 4、拉伸 特征的显示与隐藏 改变特征名称 5、外观 6、渲染 建出第一个模型 1、建立草图 图1 建立草图 按需要选择基准面。 2、选取中心线 图2 选取中心线 3、草图绘制 以对称图形举例,先画出…...

Elasticsearch:通过 ingest pipeline 对大型文档进行分块
在我之前的文章 “Elasticsearch:使用 LangChain 文档拆分器进行文档分块” 中,我详述了如何通过 LangChain 对大的文档进行分块。那个分块的动作是通过 LangChain 在 Python 中进行实现的。对于使用版权的开发者来说,我们实际上是可以通过 i…...

数据库管理-第148期 最强Oracle监控EMCC深入使用-05(20240208)
数据库管理148期 2024-02-08 数据库管理-第148期 最强Oracle监控EMCC深入使用-05(20240208)1 性能主页2 ADDM Spotlight3 实时ADDM4 数据库的其他5 主机总结 数据库管理-第148期 最强Oracle监控EMCC深入使用-05(20240208) 作者&am…...

Bug2- Hive元数据启动报错:主机被阻止因连接错误次数过多
错误代码: 在启动Hive元数据时,遇到了以下错误信息: Caused by: java.sql.SQLException: null, message from server: "Host 192.168.252.101 is blocked because of many connection errors, unblock with mysqladmin flush-hosts&qu…...

HarmonyOS 鸿蒙应用开发(十、第三方开源js库移植适配指南)
在前端和nodejs的世界里,有很多开源的js库,通过npm(NodeJS包管理和分发工具)可以安装使用众多的开源软件包。但是由于OpenHarmony开发框架中的API不完全兼容V8运行时的Build-In API,因此三方js库大都需要适配下才能用。 移植前准备 建议在适…...

Docker- chapter 1
note 1: docker 利用 volume 进行 presist data。 eg : compose.yaml: volumes:database: //# named db by self list golbal volumes: docker volume ls # the volumes on the disk inpect someone volume: docker volume inspect m…...

解决IntellIJ Idea内存不足
突然有一天我在IDEA打开两个项目时,发生了报错,说我内存不足,我这电脑内存16G怎么会内存不足。下面是我的解决方案。 IntelliJ IDEA 报告内存不足的原因通常与以下几个因素有关: 项目规模较大:如果您正在开发的项目非…...

【网络技术】【Kali Linux】Nmap嗅探(二)多设备扫描
上期实验博文:(一)简单扫描 一、实验环境 本次实验进行Nmap多设备扫描,实验使用 Kali Linux 虚拟机(扫描端)、Ubuntu 22.04虚拟机(被扫描端1)、Ubuntu 18.04虚拟机(被扫…...

简化版SpringMVC
简化版SpringMVC web.xml xml version"1.0" encoding"UTF-8"?> <web-app version"2.5" xmlns"http://java.sun.com/xml/ns/javaee" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation&quo…...

Java密码校验(正则表达式):密码由这四种元素组成(数字、大写字母、小写字母、特殊字符),且必须包含全部四种元素;密码长度大于等于8个字符。
1. 需求 对用户密码的强度进行校验,要求用户密码达到一定的强度,符合安全性要求。 1.1. 基础版需求 密码必须由字母和数字组成(同时包括数字和数字);密码长度大于等于8个字符。 1.2. 进阶版需求 密码由这四种元素…...

【AMI】2400 环境安装步骤
2400 环境安装步骤 ----------Ubuntu14.4 MDS4.0 加载代码需要勾上Update Installing SPX related packages sudo apt install gcc-multilib mtd-utils:i386 subversion patch patchutils bison sudo apt install libc6-dev libxml-dom-perl zlib1g zlib1g-dev libcurl4-ope…...

AI:124-基于深度学习的人体遮挡物体重建技术
🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的关键代码,详细讲解供…...

23种设计模式之单例模式
目录 什么是单例模式 单例模式的优点 创建单例模式的三大要点 单例模式的实现方式 饿汉模式 懒汉模式 使用场景 什么是单例模式 单例模式是一种创建型设计模式,它的核心思想是保证一个类只有一个实例,并提供一个全局访问点来访问这个实例。 什…...

leetCode 30天
题太难了,就来一个N皇后吧 51. N 皇后 class Solution { private:vector<vector<string>> res;void backtracking(int n, int row, vector<string>& chessboard){if (row n){res.push_back(chessboard);return;}for (int col 0; col<n;…...

vue3+vite+ts 配置commit强制码提交规范配置 commitlint
配置 git 提交时的 commit 信息,统一提交 git 提交规范 安装命令: npm install -g commitizen npm i cz-customizable npm i commitlint/config-conventional commitlint/cli -D 文件配置 根路径创建文件 commitlint.config.js module.exports {// 继承的规…...

PlateUML绘制UML图教程
UML(Unified Modeling Language)是一种通用的建模语言,广泛用于软件开发中对系统进行可视化建模。PlantUML是一款强大的工具,通过简单的文本描述,能够生成UML图,包括类图、时序图、用例图等。PlantUML是一款…...

自然语言处理(NLP)——使用Rasa创建聊天机器人
1 基本概念 1.1 自然语言处理的分类 IR-BOT:检索型问答系统 Task-bot:任务型对话系统 Chitchat-bot:闲聊系统 1.2 任务型对话Task-Bot:task-oriented bot 这张图展示了一个语音对话系统(或聊天机器人)的基本组成部分和它们之间的…...

使用虚拟主机部署多站点
网站目录权限的管理和虚拟主机的配置。 目录权限控制...

Openresty+Lua+Redis实现高性能缓存
一、背景 当我们的程序需要提供较高的并发访问时,往往需要在程序中引入缓存技术,通常都是使用Redis作为缓存,但是要再更进一步提升性能的话,就需要尽可能的减少请求的链路长度,比如可以将访问Redis缓存从Tomcat服务器…...