当前位置: 首页 > news >正文

改进神经网络

Improve NN

文章目录

  • Improve NN
    • train/dev/test set
    • Bias/Variance
    • basic recipe
    • Regularization
      • Logistic Regression
      • Neural network
      • other ways
    • optimization problem
      • Normalizing inputs
      • vanishing/exploding gradients
      • weight initialize
      • gradient check
        • Numerical approximation
        • grad check

train/dev/test set

0.7/0/0.3 0.6.0.2.0.2 -> 100-10000

0.98/0.01/0.01 … -> big data

Bias/Variance

偏差度量的是单个模型的学习能力,而方差度量的是同一个模型在不同数据集上的稳定性。

在这里插入图片描述

high variance ->high dev set error

high bias ->high train set error

basic recipe

high bias -> bigger network / train longer / more advanced optimization algorithms / NN architectures

high variance -> more data / regularization / NN architecture

Regularization

Logistic Regression

L 2 r e g u l a r i z a t i o n : m i n J ( w , b ) → J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∥ w ∥ 2 2 L2\;\; regularization:\\min\mathcal{J}(w,b)\rightarrow J(w,b)=\frac{1}{m}\sum_{i=1}^m\mathcal{L}(\hat y^{(i)},y^{(i)})+\frac{\lambda}{2m}\Vert w\Vert_2^2 L2regularization:minJ(w,b)J(w,b)=m1i=1mL(y^(i),y(i))+2mλw22

Neural network

F r o b e n i u s n o r m ∥ w [ l ] ∥ F 2 = ∑ i = 1 n [ l ] ∑ j = 1 n [ l − 1 ] ( w i , j [ l ] ) 2 D r o p o u t r e g u l a r i z a t i o n : d 3 = n p . r a n d m . r a n d ( a 3. s h a p e . s h a p e [ 0 ] , a 3. s h a p e [ 1 ] < k e e p . p r o b ) a 3 = n p . m u l t i p l y ( a 3 , d 3 ) a 3 / = k e e p . p r o b Frobenius\;\; norm\\ \Vert w^{[l]}\Vert^2_F=\sum_{i=1}^{n^{[l]}}\sum_{j=1}^{n^{[l-1]}}(w_{i,j}^{[l]})^2\\\\ Dropout\;\; regularization:\\ d3=np.randm.rand(a3.shape.shape[0],a3.shape[1]<keep.prob)\\ a3=np.multiply(a3,d3)\\ a3/=keep.prob Frobeniusnormw[l]F2=i=1n[l]j=1n[l1](wi,j[l])2Dropoutregularization:d3=np.randm.rand(a3.shape.shape[0],a3.shape[1]<keep.prob)a3=np.multiply(a3,d3)a3/=keep.prob

other ways

  • early stopping
  • data augmentation

optimization problem

speed up the training of your neural network

Normalizing inputs

  1. subtract mean

μ = 1 m ∑ i = 1 m x ( i ) x : = x − μ \mu =\frac{1}{m}\sum _{i=1}^{m}x^{(i)}\\ x:=x-\mu μ=m1i=1mx(i)x:=xμ

  1. normalize variance

σ 2 = 1 m ∑ i = 1 m ( x ( i ) ) 2 x / = σ \sigma ^2=\frac{1}{m}\sum_{i=1}^m(x^{(i)})^2\\ x/=\sigma σ2=m1i=1m(x(i))2x/=σ

vanishing/exploding gradients

y = w [ l ] w [ l − 1 ] . . . w [ 2 ] w [ 1 ] x w [ l ] > I → ( w [ l ] ) L → ∞ w [ l ] < I → ( w [ l ] ) L → 0 y=w^{[l]}w^{[l-1]}...w^{[2]}w^{[1]}x\\ w^{[l]}>I\rightarrow (w^{[l]})^L\rightarrow\infty \\w^{[l]}<I\rightarrow (w^{[l]})^L\rightarrow0 y=w[l]w[l1]...w[2]w[1]xw[l]>I(w[l])Lw[l]<I(w[l])L0

weight initialize

v a r ( w ) = 1 n ( l − 1 ) w [ l ] = n p . r a n d o m . r a n d n ( s h a p e ) ∗ n p . s q r t ( 1 n ( l − 1 ) ) var(w)=\frac{1}{n^{(l-1)}}\\ w^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{(l-1)}}) var(w)=n(l1)1w[l]=np.random.randn(shape)np.sqrt(n(l1)1)

gradient check

Numerical approximation

f ( θ ) = θ 3 f ′ ( θ ) = f ( θ + ε ) − f ( θ − ε ) 2 ε f(\theta)=\theta^3\\ f'(\theta)=\frac{f(\theta+\varepsilon)-f(\theta-\varepsilon)}{2\varepsilon} f(θ)=θ3f(θ)=2εf(θ+ε)f(θε)

grad check

d θ a p p r o x [ i ] = J ( θ 1 , . . . θ i + ε . . . ) − J ( θ 1 , . . . θ i − ε . . . ) 2 ε = d θ [ i ] c h e c k : ∥ d θ a p p r o x − d θ ∥ 2 ∥ d θ a p p r o x ∥ 2 + ∥ d θ ∥ 2 < 1 0 − 7 d\theta_{approx}[i]=\frac{J(\theta_1,...\theta_i+\varepsilon...)-J(\theta_1,...\theta_i-\varepsilon...)}{2\varepsilon}=d\theta[i]\\ check:\frac{\Vert d\theta_{approx}-d\theta\Vert_2}{\Vert d\theta_{approx}\Vert_2+\Vert d\theta\Vert_2}<10^{-7} dθapprox[i]=2εJ(θ1,...θi+ε...)J(θ1,...θiε...)=dθ[i]check:dθapprox2+dθ2dθapproxdθ2<107

相关文章:

改进神经网络

Improve NN 文章目录 Improve NNtrain/dev/test setBias/Variancebasic recipeRegularizationLogistic RegressionNeural networkother ways optimization problemNormalizing inputsvanishing/exploding gradientsweight initializegradient checkNumerical approximationgrad…...

HarmonyOS 开发学习笔记

HarmonyOS 开发学习笔记 一、开发准备1.1、了解ArkTs语言1.2、TypeScript语法1.2.1、变量声明1.2.2、条件控制1.2.3、函数1.2.4、类和接口1.2.5、模块开发 1.3、快速入门 二、ArkUI组件2.1、Image组件2.2、Text文本显示组件2.3、TextInput文本输入框组件2.4、Button按钮组件2.5…...

maven java 如何打纯源码zip包

一、背景 打纯源码包给第三方进行安全漏洞扫描 二、maven插件 项目中加入下面的maven 插件 <!-- 要将源码放上去&#xff0c;需要加入这个插件 --><plugin><artifactId>maven-source-plugin</artifactId><version>2.4</version><con…...

Altium Designer(AD)原理图库添加阵列管脚图文教程及视频演示

🏡《专栏目录》 目录 视频演示1,概述2,添加方法3,总结视频演示 Altium Designer(AD24)原理图库添加阵列管脚 欢迎点击浏览更多高清视频演示 1,概述...

P3647 题解

文章目录 P3647 题解OverviewDescriptionSolutionLemmaProof Main Code P3647 题解 Overview 很好的题&#xff0c;但是难度较大。 模拟小数据&#xff01;——【数据删除】 Description 给定一颗树&#xff0c;有边权&#xff0c;已知这棵树是由这两个操作得到的&#xff1…...

Vivado Tri-MAC IP的例化配置(三速以太网IP)

目录 1 Tri-MAC IP使用RGMII接口的例化配置1.1 Data Rate1.2 interface配置1.3 Shared Logic配置1.4 Features 2 配置完成IP例化视图 1 Tri-MAC IP使用RGMII接口的例化配置 在网络设计中&#xff0c;使用的IP核一般为三速以太网IP核&#xff0c;使用时在大多数场景下为配置为三…...

交友系统---让陌生人变成熟悉人的过程。APP小程序H5三端源码交付,支持二开。

随着社交网络的发展和普及&#xff0c;人们之间的社交模式正在发生着深刻的变革。传统的线下交友方式已经逐渐被线上交友取而代之。而同城交友正是这一趋势的产物&#xff0c;它利用移动互联网的便利性&#xff0c;将同城内的人们连接在一起&#xff0c;打破了时空的限制&#…...

uni-app 经验分享,从入门到离职(三)——关于 uni-app 生命周期快速了解上手

文章目录 &#x1f4cb;前言⏬关于专栏 &#x1f3af;什么是生命周期&#x1f9e9;应用生命周期&#x1f4cc; 关于 App.vue/App.uvue &#x1f9e9;页面生命周期&#x1f4cc;关于 onShow 与 onLoad 的区别 &#x1f9e9;组件生命周期 &#x1f4dd;最后 &#x1f4cb;前言 这…...

PostgreSQL 与 MySQL 相比,优势何在?

我们将通过一张对比表格详细列出 PostgreSQL 与 MySQL 在不同方面的对比&#xff1a; 对比表格 特性/数据库PostgreSQLMySQL数据类型支持支持JSON/JSONB、数组、区间等高级数据类型基本数据类型支持&#xff0c;JSON支持较普通遵循SQL标准更严格遵循&#xff0c;支持复杂查询…...

Linux(三)--文件系统

Linux命令简介 [rootlocalhost ~]# 表示 Linux 系统的命令提示符。 []&#xff1a;这是提示符的分隔符号&#xff0c;没有特殊含义。 root&#xff1a;显示的是当前的登录用户&#xff0c;笔者现在使用的是 root 用户登录。 &#xff1a;分隔符号&#xff0c;没有特殊含义。 l…...

DC-8靶机渗透详细流程

信息收集&#xff1a; 1.存活扫描&#xff1a; arp-scan -I eth0 -l └─# arp-scan -I eth0 -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:dd:ee:6a, IPv4: 192.168.10.129 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192.168.10…...

SolidWorks学习笔记——入门知识2

目录 建出第一个模型 1、建立草图 2、选取中心线 3、草图绘制 4、拉伸 特征的显示与隐藏 改变特征名称 5、外观 6、渲染 建出第一个模型 1、建立草图 图1 建立草图 按需要选择基准面。 2、选取中心线 图2 选取中心线 3、草图绘制 以对称图形举例&#xff0c;先画出…...

Elasticsearch:通过 ingest pipeline 对大型文档进行分块

在我之前的文章 “Elasticsearch&#xff1a;使用 LangChain 文档拆分器进行文档分块” 中&#xff0c;我详述了如何通过 LangChain 对大的文档进行分块。那个分块的动作是通过 LangChain 在 Python 中进行实现的。对于使用版权的开发者来说&#xff0c;我们实际上是可以通过 i…...

数据库管理-第148期 最强Oracle监控EMCC深入使用-05(20240208)

数据库管理148期 2024-02-08 数据库管理-第148期 最强Oracle监控EMCC深入使用-05&#xff08;20240208&#xff09;1 性能主页2 ADDM Spotlight3 实时ADDM4 数据库的其他5 主机总结 数据库管理-第148期 最强Oracle监控EMCC深入使用-05&#xff08;20240208&#xff09; 作者&am…...

Bug2- Hive元数据启动报错:主机被阻止因连接错误次数过多

错误代码&#xff1a; 在启动Hive元数据时&#xff0c;遇到了以下错误信息&#xff1a; Caused by: java.sql.SQLException: null, message from server: "Host 192.168.252.101 is blocked because of many connection errors, unblock with mysqladmin flush-hosts&qu…...

HarmonyOS 鸿蒙应用开发(十、第三方开源js库移植适配指南)

在前端和nodejs的世界里&#xff0c;有很多开源的js库&#xff0c;通过npm(NodeJS包管理和分发工具)可以安装使用众多的开源软件包。但是由于OpenHarmony开发框架中的API不完全兼容V8运行时的Build-In API&#xff0c;因此三方js库大都需要适配下才能用。 移植前准备 建议在适…...

Docker- chapter 1

note 1: docker 利用 volume 进行 presist data。 eg : compose.yaml&#xff1a; volumes:database: //# named db by self list golbal volumes&#xff1a; docker volume ls # the volumes on the disk inpect someone volume&#xff1a; docker volume inspect m…...

解决IntellIJ Idea内存不足

突然有一天我在IDEA打开两个项目时&#xff0c;发生了报错&#xff0c;说我内存不足&#xff0c;我这电脑内存16G怎么会内存不足。下面是我的解决方案。 IntelliJ IDEA 报告内存不足的原因通常与以下几个因素有关&#xff1a; 项目规模较大&#xff1a;如果您正在开发的项目非…...

【网络技术】【Kali Linux】Nmap嗅探(二)多设备扫描

上期实验博文&#xff1a;&#xff08;一&#xff09;简单扫描 一、实验环境 本次实验进行Nmap多设备扫描&#xff0c;实验使用 Kali Linux 虚拟机&#xff08;扫描端&#xff09;、Ubuntu 22.04虚拟机&#xff08;被扫描端1&#xff09;、Ubuntu 18.04虚拟机&#xff08;被扫…...

简化版SpringMVC

简化版SpringMVC web.xml xml version"1.0" encoding"UTF-8"?> <web-app version"2.5" xmlns"http://java.sun.com/xml/ns/javaee" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation&quo…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...