【人工智能】神奇的Embedding:文本变向量,大语言模型智慧密码解析(10)
什么是嵌入?
OpenAI 的文本嵌入衡量文本字符串的相关性。嵌入通常用于:
- Search 搜索(结果按与查询字符串的相关性排序)
- Clustering 聚类(文本字符串按相似性分组)
- Recommendations 推荐(推荐具有相关文本字符串的条目)
- Anomaly detection 异常检测(识别出相关性很小的异常值)
- Diversity measurement 多样性测量(分析相似性分布)
- Classification 分类(其中文本字符串按其最相似的标签分类)
嵌入是浮点数的向量(列表)。两个向量之间的距离衡量它们的相关性。小距离表示高相关性,大距离表示低相关性。
访问我们的定价页面以了解嵌入定价。请求根据发送的输入中的令牌(Token) 数量计费。
如何获得嵌入
要获得嵌入,请将您的文本字符串连同选择的嵌入模型 ID(例如,text-embedding-ada-002)一起发送到嵌入 API 端点。响应将包含一个嵌入,您可以提取、保存和使用它。
示例请求:
curl https://api.openai.com/v1/embeddings \-H "Content-Type: application/json" \-H "Authorization: Bearer $OPENAI_API_KEY" \-d '{"input": "Your text string goes here","model": "text-embedding-ada-002"
}'
示例响应:
{
"data": [{"embedding": [-0.006929283495992422,-0.005336422007530928,...-4.547132266452536e-05,-0.024047505110502243],"index": 0,"object": "embedding"}],"model": "text-embedding-ada-002","object": "list","usage": {"prompt_tokens": 5,"total_tokens": 5}
}
在 OpenAI Cookbook 中查看更多 Python 代码示例。
使用 OpenAI 嵌入时,请牢记它们的 局限性和风险。
嵌入模型
OpenAI 提供了一个第二代嵌入模型(在模型 ID 中用 -002 表示)和 16 个第一代模型(在模型 ID 中用 -001 表示)。
我们建议对几乎所有用例使用 text-embedding-ada-002。它更好、更便宜、更易于使用。
| 模型生成 | 分词器 | 最大输入 token | 数据来源截止至 |
|---|---|---|---|
| V2 | cl100k_base | 8191 | Sep 2021 |
| V1 | GPT-2/GPT-3 | 2046 | Aug 2020 |
使用量按输入令牌(Token) 定价,每 1000 个令牌(Token) 0.0004 美元,或每美元约 3,000 页(假设每页约 800 个令牌(Token) ):
| 模型 | 每美元粗略页数 | BEIR 搜索评估的示例性能 |
|---|---|---|
| text-embedding-ada-002 | 3000 | 53.9 |
| -davinci--001 | 6 | 52.8 |
| -curie--001 | 60 | 50.9 |
| -babbage--001 | 240 | 50.4 |
| -ada--001 | 300 | 49.0 |
第二代模型
| 模型名称 | 分词器 | 最大输入 token | 输出 |
|---|---|---|---|
| text-embedding-ada-002 | cl100k_base | 8191 | 1536 |
第一代模型(不推荐)
所有第一代模型(以 -001 结尾的模型)都使用 GPT-3 分词器,最大输入为 2046 个分词。
用例
在这里,我们展示了一些有代表性的用例。我们将在以下示例中使用亚马逊美食评论数据集。
获取嵌入
该数据集包含截至 2012 年 10 月亚马逊用户留下的总共 568,454 条食品评论。我们将使用 1,000 条最新评论的子集用于说明目的。评论是英文的,往往是正面的或负面的。每条评论都有一个 ProductId、UserId、Score、评论标题(Summary)和评论正文(Text)。例如:
| PRODUCT ID | USER ID | SCORE | SUMMARY | TEXT |
|---|---|---|---|---|
| B001E4KFG0 | A3SGXH7AUHU8GW | 5 | Good Quality Dog Food | I have bought several of the Vitality canned… |
| B00813GRG4 | A1D87F6ZCVE5NK | 1 | Not as Advertised | Product arrived labeled as Jumbo Salted Peanut… |
我们会将评论摘要和评论文本合并为一个组合文本。该模型将对该组合文本进行编码并输出单个向量嵌入。
Obtain_dataset.ipynb
def get_embedding(text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
return openai.Embedding.create(input = [text], model=model)['data'][0]['embedding']df['ada_embedding'] = df.combined.apply(lambda x: get_embedding(x, model='text-embedding-ada-002'))
df.to_csv('output/embedded_1k_reviews.csv', index=False)
要从保存的文件中加载数据,您可以运行以下命令:
import pandas as pddf = pd.read_csv('output/embedded_1k_reviews.csv')
df['ada_embedding'] = df.ada_embedding.apply(eval).apply(np.array)
二维数据可视化
Visualizing_embeddings_in_2D.ipynb
嵌入的大小随底层模型的复杂性而变化。为了可视化这种高维数据,我们使用 t-SNE 算法将数据转换为二维。
我们根据评论者给出的星级评分为各个评论着色:
- 1-star: red (红色)
- 2-star: dark orange (深橙色)
- 3-star: gold (金色)
- 4-star: turquoise (薄荷绿)
- 5-star: dark green (深绿色)

可视化似乎产生了大约 3 个集群,其中一个集群的评论大多是负面的。
import pandas as pd
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import matplotlibdf = pd.read_csv('output/embedded_1k_reviews.csv')
matrix = df.ada_embedding.apply(eval).to_list()# Create a t-SNE model and transform the datatsne = TSNE(n_components=2, perplexity=15, random_state=42, init='random', learning_rate=200)
vis_dims = tsne.fit_transform(matrix)colors = ["red", "darkorange", "gold", "turquiose", "darkgreen"]
x = [x for x,y in vis_dims]
y = [y for x,y in vis_dims]
color_indices = df.Score.values - 1colormap = matplotlib.colors.ListedColormap(colors)
plt.scatter(x, y, c=color_indices, cmap=colormap, alpha=0.3)
plt.title("Amazon ratings visualized in language using t-SNE")
嵌入作为 ML 算法的文本特征编码器
Regression_using_embeddings.ipynb
嵌入可以用作机器学习模型中的通用自由文本特征编码器。如果一些相关输入是自由文本,则合并嵌入将提高任何机器学习模型的性能。嵌入也可以用作 ML 模型中的分类特征编码器。如果分类变量的名称有意义且数量众多,例如职位名称,那么这会增加最大的价值。对于此任务,相似性嵌入通常比搜索嵌入表现更好。
我们观察到,通常嵌入表示非常丰富且信息密集。例如,使用 SVD 或 PCA 降低输入的维度,即使降低 10%,通常也会导致特定任务的下游性能变差。
此代码将数据拆分为训练集和测试集,将由以下两个用例使用,即回归和分类。
from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(list(df.ada_embedding.values),df.Score,test_size = 0.2,random_state=42
)
使用嵌入特征进行回归
嵌入提供了一种预测数值的优雅方法。在这个例子中,我们根据评论的文本预测评论者的星级。因为嵌入中包含的语义信息很高,所以即使评论很少,预测也不错。
我们假设分数是 1 到 5 之间的连续变量,并允许算法预测任何浮点值。 ML 算法最小化预测值与真实分数的距离,并实现 0.39 的平均绝对误差,这意味着平均预测偏差不到半星。
from sklearn.ensemble import RandomForestRegressorrfr = RandomForestRegressor(n_estimators=100)
rfr.fit(X_train, y_train)
preds = rfr.predict(X_test)
使用嵌入特征进行分类
Classification_using_embeddings.ipynb
这一次,我们不再让算法预测 1 到 5 之间的任何值,而是尝试将评论的确切星数分类为 5 个桶,范围从 1 到 5 星。
训练后,该模型学习预测 1 星和 5 星评论比更细微的评论(2-4 星)更好,这可能是由于更极端的情绪表达。
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_scoreclf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
preds = clf.predict(X_test)
零样本分类
Zero-shot_classification_with_embeddings.ipynb
我们可以在没有任何标记训练数据的情况下使用嵌入进行零样本分类。对于每个类,我们嵌入类名或类的简短描述。为了以零样本方式对一些新文本进行分类,我们将其嵌入与所有类嵌入进行比较,并预测具有最高相似度的类。
from openai.embeddings_utils import cosine_similarity, get_embeddingdf= df[df.Score!=3]
df['sentiment'] = df.Score.replace({1:'negative', 2:'negative', 4:'positive', 5:'positive'})labels = ['negative', 'positive']
label_embeddings = [get_embedding(label, model=model) for label in labels]def label_score(review_embedding, label_embeddings):
return cosine_similarity(review_embedding, label_embeddings[1]) - cosine_similarity(review_embedding, label_embeddings[0])prediction = 'positive' if label_score('Sample Review', label_embeddings) > 0 else 'negative'
获取用于冷启动推荐的用户和产品嵌入
User_and_product_embeddings.ipynb
我们可以通过对他们的所有评论进行平均来获得用户嵌入。同样,我们可以通过对有关该产品的所有评论进行平均来获得产品嵌入。为了展示这种方法的实用性,我们使用 50k 评论的子集来覆盖每个用户和每个产品的更多评论。
我们在单独的测试集上评估这些嵌入的有用性,我们将用户和产品嵌入的相似性绘制为评分的函数。有趣的是,基于这种方法,甚至在用户收到产品之前,我们就可以比随机预测更好地预测他们是否喜欢该产品。

user_embeddings = df.groupby('UserId').ada_embedding.apply(np.mean)
prod_embeddings = df.groupby('ProductId').ada_embedding.apply(np.mean)
聚类
Clustering.ipynb
聚类是理解大量文本数据的一种方式。嵌入对于这项任务很有用,因为它们提供了每个文本的语义上有意义的向量表示。因此,以一种无监督的方式,聚类将揭示我们数据集中隐藏的分组。
在这个例子中,我们发现了四个不同的集群:一个专注于狗食,一个专注于负面评论,两个专注于正面评论。

import numpy as np
from sklearn.cluster import KMeansmatrix = np.vstack(df.ada_embedding.values)
n_clusters = 4kmeans = KMeans(n*clusters = n_clusters, init='k-means++', random_state=42)
kmeans.fit(matrix)
df['Cluster'] = kmeans.labels*
使用嵌入的文本搜索
Semantic_text_search_using_embeddings.ipynb
为了检索最相关的文档,我们使用查询的嵌入向量与每个文档之间的余弦相似度,并返回得分最高的文档。
from openai.embeddings_utils import get_embedding, cosine_similaritydef search_reviews(df, product_description, n=3, pprint=True):embedding = get_embedding(product_description, model='text-embedding-ada-002')df['similarities'] = df.ada_embedding.apply(lambda x: cosine_similarity(x, embedding))res = df.sort_values('similarities', ascending=False).head(n)return resres = search_reviews(df, 'delicious beans', n=3)
使用嵌入的代码搜索
Code_search.ipynb
代码搜索的工作方式类似于基于嵌入的文本搜索。我们提供了一种从给定存储库中的所有 Python 文件中提取 Python 函数的方法。然后每个函数都由 text-embedding-ada-002 模型索引。
为了执行代码搜索,我们使用相同的模型将查询嵌入到自然语言中。然后我们计算结果查询嵌入和每个函数嵌入之间的余弦相似度。最高的余弦相似度结果是最相关的。
from openai.embeddings_utils import get_embedding, cosine_similaritydf['code_embedding'] = df['code'].apply(lambda x: get_embedding(x, model='text-embedding-ada-002'))def search_functions(df, code_query, n=3, pprint=True, n_lines=7):embedding = get_embedding(code_query, model='text-embedding-ada-002')df['similarities'] = df.code_embedding.apply(lambda x: cosine_similarity(x, embedding))res = df.sort_values('similarities', ascending=False).head(n)return res
res = search_functions(df, 'Completions API tests', n=3)
使用嵌入的推荐
Recommendation_using_embeddings.ipynb
因为嵌入向量之间的距离越短表示相似度越高,嵌入可用于推荐。
下面,我们说明了一个基本的推荐系统。它接受一个字符串列表和一个“源”字符串,计算它们的嵌入,然后返回字符串的排名,从最相似到最不相似。作为一个具体示例,下面链接的笔记本将此函数的一个版本应用于 AG 新闻数据集(采样到 2,000 篇新闻文章描述)以返回与任何给定源文章最相似的前 5 篇文章。
def recommendations_from_strings(strings: List[str],index_of_source_string: int,model="text-embedding-ada-002",
) -> List[int]:"""Return nearest neighbors of a given string."""# get embeddings for all stringsembeddings = [embedding_from_string(string, model=model) for string in strings]# get the embedding of the source stringquery_embedding = embeddings[index_of_source_string]# get distances between the source embedding and other embeddings (function from embeddings_utils.py)distances = distances_from_embeddings(query_embedding, embeddings, distance_metric="cosine")# get indices of nearest neighbors (function from embeddings_utils.py)indices_of_nearest_neighbors = indices_of_nearest_neighbors_from_distances(distances)return indices_of_nearest_neighbors
局限性和风险
我们的嵌入模型可能不可靠或在某些情况下会带来社会风险,并且在没有缓解措施的情况下可能会造成伤害。
社会偏见
局限性:模型对社会偏见进行编码,例如通过对某些群体的刻板印象或负面情绪。
我们通过运行 SEAT(May 等人,2019 年)和 Winogender(Rudinger 等人,2018 年)基准测试发现了模型中存在偏差的证据。这些基准一起包含 7 个测试,用于衡量模型在应用于性别名称、区域名称和某些刻板印象时是否包含隐性偏见。
例如,我们发现,与非裔美国人的名字相比,我们的模型更强烈地将 (a) 欧裔美国人的名字与积极情绪联系起来,以及 (b) 对黑人女性的负面刻板印象。
这些基准在几个方面存在局限性:(a) 它们可能无法推广到您的特定用例,以及 (b) 它们仅测试极小部分可能的社会偏见。
这些测试是初步的,我们建议针对您的特定用例运行测试。这些结果应被视为该现象存在的证据,而不是对您的用例的明确描述。请参阅我们的使用政策以获取更多详细信息和指导。
如果您有任何问题,请通过聊天联系我们的支持团队;我们很乐意就此提供建议。
对最近发生的事件视而不见
局限性:模型缺乏对 2020 年 8 月之后发生的事件的了解。
我们的模型在包含 8/2020 之前真实世界事件的一些信息的数据集上进行训练。如果你依赖于代表最近事件的模型,那么它们可能表现不佳。
常见问题
在嵌入字符串之前,如何知道它有多少个 Token?
在 Python 中,您可以使用 OpenAI 的分词器 tiktoken 将字符串拆分为分词。
示例代码:
import tiktokendef num_tokens_from_string(string: str, encoding_name: str) -> int:"""Returns the number of tokens in a text string."""encoding = tiktoken.get_encoding(encoding_name)num_tokens = len(encoding.encode(string))return num_tokensnum_tokens_from_string("tiktoken is great!", "cl100k_base")
对于像 text-embedding-ada-002 这样的第二代嵌入模型,使用 cl100k_base 编码。
更多详细信息和示例代码在 OpenAI Cookbook 指南中如何使用 tiktoken 计算令牌(Token) 。
如何快速检索 K 个最近的嵌入向量?
为了快速搜索多个向量,我们建议使用向量数据库。您可以在 GitHub 上的 Cookbook 中找到使用向量数据库和 OpenAI API 的示例。
向量数据库选项包括:
- Pinecone, 完全托管的向量数据库
- Weaviate, 开源向量搜索引擎
- Redis 用作向量数据库
- Qdrant, 向量搜索引擎
- Milvus, 为可扩展的相似性搜索而构建的向量数据库
- Chroma,一个开源嵌入数据库
- Typesense,快速开源矢量搜索
- Zilliz,数据基础设施,由 Milvus 提供支持
我应该使用哪个 distance 函数?
我们推荐余弦相似度。distance 函数的选择通常无关紧要。
OpenAI 嵌入被归一化为长度 1,这意味着:
- 仅使用点积可以稍微更快地计算余弦相似度
- 余弦相似度和欧几里德距离将导致相同的排名
相关文章:
【人工智能】神奇的Embedding:文本变向量,大语言模型智慧密码解析(10)
什么是嵌入? OpenAI 的文本嵌入衡量文本字符串的相关性。嵌入通常用于: Search 搜索(结果按与查询字符串的相关性排序)Clustering 聚类(文本字符串按相似性分组)Recommendations 推荐(推荐具有…...
Redis + Lua 实现分布式限流器
文章目录 Redis Lua 限流实现1. 导入依赖2. 配置application.properties3. 配置RedisTemplate实例4. 定义限流类型枚举类5. 自定义注解6. 切面代码实现7. 控制层实现8. 测试 相比 Redis事务, Lua脚本的优点: 减少网络开销:使用Lua脚本&…...
ruoyi若依框架SpringSecurity实现分析
系列文章 ruoyi若依框架学习笔记-01 ruoyi若依框架分页实现分析 ruoyi若依框架SpringSecurity实现分析 文章目录 系列文章前言具体分析一、项目中的SpringSecurity版本二、登录认证流程分析三、权限鉴定四、退出登录五、SpringSecurity配置类 总结 前言 在ruoyi-vue若依框…...
Habitat环境学习四:Habitat-sim基础用于导航——使用导航网格NavMesh
如何使用导航网格NavMesh 官方教程1、NavMesh基础定义1.1 使用NavMesh的原因1.2 什么是NavMesh 2、NavMesh的使用方法2.1 获取自上而下Top down view视角地图2.2 在NavMesh中进行查询以及随机产生可导航点2.3 查找最短路径2.4 场景加载NavMesh2.5 重新计算并生成NavMesh2.6 什么…...
python学习笔记 -- 字符串
目录 一、输出字符串的格式 二、字符串的一些函数 1、len函数:字符串长度 2、查找字符所在位置index 3、某字符在字符串中的个数count 4、字符切片 对字符串进行翻转 -- 利用步长 5、修改大小写字母: 6、判断开头和结尾 7、拆分字符串 一、输出…...
2024年GPT如何发展?
2023 年,人工智能领域最具影响的莫过于 GPT-4、ChatGPT 了。 ChatGPT 凭一己之力掀起了 AI 领域的热潮,火爆全球,似乎开启了第四次工业革命。 ChatGPT 入选《Nature》2023 年度十大人物(Nature’s 10),这…...
从REPR设计模式看 .NET的新生代类库FastEndpoints的威力
📢欢迎点赞 :👍 收藏 ⭐留言 📝 如有错误敬请指正,赐人玫瑰,手留余香!📢本文作者:由webmote 原创📢作者格言:新的征程,我们面对的不仅仅是技术还有人心,人心不可测,海水不可量,唯有技术,才是深沉黑夜中的一座闪烁的灯塔 !序言 又到了一年年末,春节将至…...
前端入门:(五)JavaScript 续
10. 浏览器存储 10.1 Cookie的概念和使用 Cookie是一种存储在用户计算机上的小型文本文件,用于跟踪和识别用户。Cookie通常用于存储用户的偏好设置、会话信息等,可以通过JavaScript进行读取和设置。 // 示例:设置和读取Cookie document.co…...
研究多态恶意软件,探讨网络安全与AI
前言 近期ChatGPT火遍全球,AI技术被应用到了全球各行各业当中,国内外各大厂商也开始推出自己的ChatGPT,笔者所在公司在前段时间也推出了自研的安全GPT,AI技术在网络安全行业得到了很多的应用,不管是网络安全研究人员、…...
linux驱动工作原理
linux或者windows驱动是如何对上和对下工作的,请用中文回答 在Linux系统中,设备驱动程序通过在/dev目录下创建文件系统条目与硬件通信。应用程序通过打开这些文件来获取描述符,以此来与设备交互。驱动程序内部使用主次设备号来标识设备。而在…...
Rust语言入门(第3篇)
引用与借用 上一篇中,我们介绍了rust的所有权概念,若直接传递变量做函数参数,堆上的变量就会失去所有权,而栈上变量则由于复制,仍有所有权。 fn main(){let b 3;makes_copy(b);println!("after using a variab…...
电脑服务器离线安装.net framework 3.5解决方案(错误:0x8024402c )(如何确定当前系统是否安装NET Framework 3.5)
问题环境: 日常服务的搭建或多或少都会有需要到NET Framework 3.5的微软程序运行框架,本次介绍几种不同的安装方式主要解决运行在Windows 2012 以上的操作系统的服务。 NET Framework 3.5 是什么? .NET Framework是微软公司推出的程序运行框架…...
Three.js学习8:基础贴图
一、贴图 贴图(Texture Mapping),也翻译为纹理映射,“贴图”这个翻译更直观。 贴图,就是把图片贴在 3D 物体材质的表面,让它具有一定的纹理,来为 3D 物体添加细节的一种方法。这使我们能够添加…...
【Linux】进程学习(二):进程状态
目录 1.进程状态1.1 阻塞1.2 挂起 2. 进程状态2.1 运行状态-R进一步理解运行状态 2.2 睡眠状态-S2.3 休眠状态-D2.4 暂停状态-T2.5 僵尸状态-Z僵尸进程的危害 2.6 死亡状态-X2.7 孤儿进程 1.进程状态 1.1 阻塞 阻塞:进程因为等待某种条件就绪,而导致的…...
Spring Boot 笔记 003 Bean注册
使用Idea导入第三方jar包 在porn.xml种添加的第三方jar包依赖,并刷新 可以在启动类中尝试调用 以上放到启动类中,不推荐,建议创建一个专门定义的类 package com.geji.config;import cn.itcast.pojo.Country; import cn.itcast.pojo.Province;…...
PCIE 参考时钟架构
一、PCIe架构组件 首先先看下PCIE架构组件,下图中主要包括: ROOT COMPLEX (RC) (CPU); PCIE PCI/PCI-X Bridge; PCIE SWITCH; PCIE ENDPOINT (EP) (pcie设备); BUFFER; 各个器件的时钟来源都是由100MHz经过Buffer后提供。一个PCIE树上最多可以有256…...
【开源】JAVA+Vue.js实现在线课程教学系统
目录 一、摘要1.1 系统介绍1.2 项目录屏 二、研究内容2.1 课程类型管理模块2.2 课程管理模块2.3 课时管理模块2.4 课程交互模块2.5 系统基础模块 三、系统设计3.1 用例设计3.2 数据库设计 四、系统展示4.1 管理后台4.2 用户网页 五、样例代码5.1 新增课程类型5.2 网站登录5.3 课…...
计算机网络(第六版)复习提纲29
第六章:应用层 SS6.1 域名系统DNS 1 DNS被设计为一个联机分布式数据库系统,并采用客户服务器方式(C/S) 2 域名的体系结构 3 域名服务器及其体系结构 A 域名服务器的分类 1 根域名服务器 2 顶级域名服务器(TLD服务器&a…...
有道ai写作,突破免费限制,无限制使用
预览效果 文末提供源码包及apk下载地址 有道ai写作python版 import hashlib import time import json import ssl import base64 import uuidfrom urllib.parse import quote import requests from requests_toolbelt.multipart.encoder import MultipartEncoder from Crypto…...
node.js 使用 elementtree 生成思维导图 Freemind 文件
请参阅: java : pdfbox 读取 PDF文件内书签 请注意:书的目录.txt 编码:UTF-8,推荐用 Notepad 转换编码。 npm install elementtree --save 编写 txt_etree_mm.js 如下 // 读目录.txt文件,使用 elementtree 生成思维导图 Free…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
