挑战杯 opencv 图像识别 指纹识别 - python
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 基于机器视觉的指纹识别系统
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:4分
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 课题背景
指纹是指人类手指上的条状纹路, 它们的形成依赖于胚胎发育时的环境。“没有2个完全相同的指纹”这一观点已经得到公认。指纹识别已经有了很长一段历史。
据考古学家证实:公元前6 000年以前, 指纹作为身份鉴别的工具已经在古叙利亚和中国开始应用。到了20世纪80年代,、光学扫描这2项技术的革新,
使得它们作为指纹取像的工具成为现实, 从而使指纹识别可以在其他领域中得以应用。
现在, 随着取像设备的引入及其飞速发展, 生物指纹识别技术的逐渐成熟, 可靠的比对算法的发现都为指纹识别技术提供了更广阔的舞台。
本项目实现了一种指纹识别系统,通过过滤过程来确定用户指纹是否与注册的指纹匹配。通过过滤技术对捕获的指纹进行处理,以从捕获的图像中去除噪声。去除噪声后的最终结果与注册的指纹进行特征匹配,以确定它们是否相同。
2 效果展示


3
3 具体实现
3.1 图像对比过滤
图像融合是一种图像增强方法,这里先融合两个图像便于特征点对比。利用的是opencv封装的函数
cv2.addWeighted()
相关代码
def apply_Contrast(img):alpha = 0.5 # assigned weight to the first imagebeta = 0.5 # assigned weight to the second imageimg_second = np.zeros(img.shape, img.dtype) # second image, copy of first onecontrast = cv2.addWeighted(img, alpha, img_second, 0, beta) # applying contrastreturn contrast
3.2 图像二值化
简介
图像二值化( Image
Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。二值图像每个像素只有两种取值:要么纯黑,要么纯白。

二值图像数据足够简单,许多视觉算法都依赖二值图像。通过二值图像,能更好地分析物体的形状和轮廓。
在计算机视觉里,一般用矩阵来表示图像。也就是说,无论你的图片看上去多么好吃,对计算机来说都不过是个矩阵而已。在这个矩阵里,每一个像素就是矩阵中的一个元素。在三通道的彩色图像中,这个元素是由三个数字组成的元组。而对于单通道的灰度图像来说,这个元素就是一个数字。这个数字代表了图像在这个点的亮度,数字越大像素点也就越亮,在常见的八位单通道色彩空间中,0代表全黑,255代表全白。
相关代码
def apply_Binarization(img):# if pixel value is greater then the threshold value it is assigned a singular color of either black or white_, mask = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY_INV)return mask
3.3 图像侵蚀细化
图像侵蚀(腐蚀)
腐蚀(Erosion)- shrink image regions,侵蚀是数学形态学领域的两个基本算子之一,另一个是膨胀。
它通常应用于二值图像,但是有些版本可用于灰度图像。 算子对二值图像的基本作用是侵蚀前景像素(通常为白色像素)区域的边界。
因此,前景像素的区域尺寸缩小,并且这些区域内的孔洞变大。

图像细化
细化(Thinning)- structured erosion using image pattern
matching,细化是一种形态学操作,用于从二值图像中删除选定的前景像素,有点像侵蚀或开口。 它可以用于多种应用程序,但是对于骨架化特别有用。
在这种模式下,通常通过将所有行减少到单个像素厚度来整理边缘检测器的输出。 细化通常仅应用于二值图像,并产生另一个二值图像作为输出。

相关代码
def apply_Erosion(img):kernal = np.ones((3,3), np.uint8) # shape applied to image, 3x3 square shape is applied to contrast imageerosion = cv2.erode(img, kernal, iterations=1) # erosion mask applied to the contrast image to thin fingerprint ridgesreturn erosion
3.4 图像增强
图像增强的主要目的是提高图像的质量和可辨识度,使图像更有利于观察或进一步分析处理。图像增强技术一般通过对图像的某些特征,例如边缘信息、轮廓信息和对比度等进行突出或增强,从而更好的显示图像的有用信息,提高图像的使用价值。图像增强技术是在一定标准下,处理后的图像比原图像效果更好。
相关代码
def apply_highlighting(img):
feature_points = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
Image_blue = np.array(feature_points, copy=True)
white_px = np.asarray([255, 255, 255])blue_px = np.asarray([0 , 255 , 255 ])(row, col, _) = feature_points.shapefor r in range(row):for c in range(col):px = feature_points[r][c]if all(px == white_px):Image_blue[r][c] = blue_pxreturn Image_blue
3.5 特征点检测
指纹特征提取的主要目的是计算指纹核心点(Core)和细节点(Minutia)的特征信息。在提取指纹核心点时,采用的是Poincare
Index算法,该算法的思路是在指纹图像某像素点区域内,按围绕该点的闭合曲线逆时针方向旋转一周,计算方向角度旋转变化量的和,最后以计算结果来寻找核心点。计算过程中如果某像素点的Poincare
Index值为π则判定为核心点,然后便提取该点的坐标与方向场信息,记为P(Cx, Cy, θc)。
相关代码
def show_featurepoints(img):
#show feature points found in fingerprint using orb detector
orb = cv2.ORB_create(nfeatures=1200)
keypoints, descriptors = orb.detectAndCompute(img, None)
featurepoint_img = img
featurepoint_img = cv2.drawKeypoints(featurepoint_img, keypoints, None, color=(255, 0 ,0)) return featurepoint_img
4 OpenCV
简介
Opencv(Open Source Computer Vision
Library)是一个基于开源发行的跨平台计算机视觉库,它实现了图像处理和计算机视觉方面的很多通用算法,已成为计算机视觉领域最有力的研究工具。在这里我们要区分两个概念:图像处理和计算机视觉的区别:图像处理侧重于“处理”图像–如增强,还原,去噪,分割等等;而计算机视觉重点在于使用计算机来模拟人的视觉,因此模拟才是计算机视觉领域的最终目标。
OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS,
如今也提供对于C#、Ch、Ruby,GO的支持。
基础功能速查表

5 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
挑战杯 opencv 图像识别 指纹识别 - python
0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于机器视觉的指纹识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:4分 该项目较为新颖,适…...
【Docker】了解Docker Desktop桌面应用程序,TA是如何管理和运行Docker容器(2)
欢迎来到《小5讲堂》,大家好,我是全栈小5。 这是《Docker容器》系列文章,每篇文章将以博主理解的角度展开讲解, 特别是针对知识点的概念进行叙说,大部分文章将会对这些概念进行实际例子验证,以此达到加深对…...
PHP、Python、Java 和 Go语言对比
PHP、Python、Java 和 Go 都是流行的编程语言,每种语言都有其独特的优势和适用场景。下面是对这些语言的一些基本对比: 一:PHP 适用场景:主要用于Web开发,特别是服务器端脚本。 特点:语法简单易懂&#…...
算法题目题单+题解——图论
简介 本文为自己做的一部分图论题目,作为题单列出,持续更新。 题单由题目链接和题解两部分组成,题解部分提供简洁题意,代码仓库:Kaiser-Yang/OJProblems。 对于同一个一级标题下的题目,题目难度尽可能做…...
车载测试中:如何处理 bug
一:Jira 提交 bug 包含那些内容 二:如何处理现上 bug 三:车载相关的 bug 如何定位 四:遇到 bug ,复现不出来怎么办 五:bug 的处理流程 一:Jira 提交 bug 包含那些内容二:如何处理现上…...
亲测解决vscode的debug用不了、点了没反应
这个问题在小虎登录vscode同步了设置后出现,原因是launch文件被修改或删除。解决方法是重新添加launch。 坏境配置 win11 + vscode 解决方法 Ctrl + shift + P,搜索debug添加配置: 选择python debugger。 结果生成了一个文件在当前路径: launch内容: {// Use Int…...
立足智能存取解决方案|HEGERLS智能托盘四向车储存制动能量 实现能源回收
对于商业配送和工业生产的企业而言,如何能高效率、低成本进行低分拣、运输、码垛、入库,用以提升仓库空间的利用效率,是现在大多企业急需要解决的行业痛点。对此,为了解决上述痛点,近年来,物流仓储集成商、…...
2024.2.8日总结(小程序开发5)
对上拉触底事件进行节流处理 在data中定义isloading节流阀 false表示当前没有进行任何数据请求true表示当前正在进行数据请求 在getColors()方法中修改isloading节流阀的值 在刚调用getColors时将节流阀设置true在网络请求的complete回调函数中,将节流阀重置为f…...
Spring Boot配置文件优先级
1、bat文件启动java程序 java -Dmmmqqq -Dfile.encodingUTF-8 -jar ruoyi-admin.jar --mmmiii --llllll 2、配置类型 程序参数Program arguments : --mmmiii 单个属性值,可以从String[] args读取到,放在jar包命令后面 VM参数VM options :一般以-D …...
Rust 初体验1
Rust 初体验 安装 打开官网,下载 rustup-init.exe, 选择缺省模式(1)安装。 国内源设置 在 .Cargo 目录下新建 config 文件,添加如下内容: [source.crates-io] registry "https://github.com/rus…...
【深度学习】实验7布置,图像超分辨
清华大学驭风计划 因为篇幅原因实验答案分开上传, 实验答案链接http://t.csdnimg.cn/P1yJF 如果需要更详细的实验报告或者代码可以私聊博主 有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~ 深度学习训练营 案例 7 ࿱…...
【八大排序】归并排序 | 计数排序 + 图文详解!!
📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构冒险记 ✅C语言进阶之路 🌅 有航道的人,再渺小也不会迷途。 文章目录 一、归并排序1.1 基本思想 动图演示2.2 递归版本代码实现 算法步骤2.3 非递归版本代…...
Netty应用(三) 之 NIO开发使用 网络编程 多路复用
目录 重要:logback日志的引入以及整合步骤 5.NIO的开发使用 5.1 文件操作 5.1.1 读取文件内容 5.1.2 写入文件内容 5.1.3 文件的复制 5.2 网络编程 5.2.1 accept,read阻塞的NIO编程 5.2.2 把accept,read设置成非阻塞的NIO编程 5.2.3…...
融资项目——配置redis
一、 在maven中导入相关依赖。在springboot框架中,我们使用spring data redis <!-- spring boot redis缓存引入 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifa…...
npm修改镜像源
背景:切换npm镜像源是经常遇到的事,下面记录下具体操作命令 1. 打开终端运行"npm config get registry"命令来查看当前配置的镜像源 npm config get registry2. 修改成淘宝镜像源"https://registry.npmjs.org/" npm config set re…...
K8S系列文章之 [基于 Alpine 使用 kubeadm 搭建 k8s]
先部署基础环境,然后根据官方文档 K8s - Alpine Linux,进行操作。 将官方文档整理为脚本 整理脚本时,有部分调整 #!/bin/shset -x # 添加源,安装时已经配置 #cat >> /etc/apk/repositories <<"EOF" #htt…...
JVM相关-JVM模型、垃圾回收、JVM调优
一、JVM模型 JVM内部体型划分 JVM的内部体系结构分为三部分,分别是:类加载器(ClassLoader)子系统、运行时数据区(内存)和执行引擎 1、类加载器 概念 每个JVM都有一个类加载器子系统(class l…...
提升图像分割精度:学习UNet++算法
文章目录 一、UNet 算法简介1.1 什么是 UNet 算法1.2 UNet 的优缺点1.3 UNet 在图像分割领域的应用 二、准备工作2.1 Python 环境配置2.2 相关库的安装 三、数据处理3.1 数据的获取与预处理3.2 数据的可视化与分析 四、网络结构4.1 UNet 的网络结构4.2 UNet 各层的作用 五、训练…...
排序算法---冒泡排序
原创不易,转载请注明出处。欢迎点赞收藏~ 冒泡排序是一种简单的排序算法,其原理是重复地比较相邻的两个元素,并将顺序不正确的元素进行交换,使得每次遍历都能将一个最大(或最小)的元素放到末尾。通过多次遍…...
基于数据挖掘的微博事件分析与可视化大屏分析系统
设计原理,是指一个系统的设计由来,其将需求合理拆解成功能,抽象的描述系统的模块,以模块下的功能。功能模块化后,变成可组合、可拆解的单元,在设计时,会将所有信息分解存储在各个表中࿰…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
