当前位置: 首页 > news >正文

Elasticsearch:使用查询规则(query rules)进行搜索

在之前的文章 “Elasticsearch 8.10 中引入查询规则 - query rules”,我们详述了如何使用 query rules 来进行搜索。这个交互式笔记本将向你介绍如何使用官方 Elasticsearch Python 客户端来使用查询规则。 你将使用 query rules API 将查询规则存储在 Elasticsearch 中,并使用 rule_query 查询它们。

安装

安装 Elasticsearch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

  • Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana

在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

环境变量

在启动 Jupyter 之前,我们设置如下的环境变量:

export ES_USER="elastic"
export ES_PASSWORD="xnLj56lTrH98Lf_6n76y"
export ES_ENDPOINT="localhost"

请在上面修改相应的变量的值。这个需要在启动 jupyter 之前运行。

拷贝 Elasticsearch 证书

我们把 Elasticsearch 的证书拷贝到当前的目录下:

$ pwd
/Users/liuxg/python/elser
$ cp ~/elastic/elasticsearch-8.12.0/config/certs/http_ca.crt .
$ ls http_ca.crt 
http_ca.crt

安装 Python 依赖包

python3 -m pip install -qU elasticsearch load_dotenv

准备数据

我们在项目当前的目录下创建如下的数据文件:

query-rules-data.json 

[{"id": "us1","content": {"name": "PureJuice Pro","description": "PureJuice Pro: Experience the pinnacle of wireless charging. Blending rapid charging tech with sleek design, it ensures your devices are powered swiftly and safely. The future of charging is here.","price": 15.00,"currency": "USD","plug_type": "B","voltage": "120v"}},{"id": "uk1","content": {"name": "PureJuice Pro - UK Compatible","description": "PureJuice Pro: Redefining wireless charging. Seamlessly merging swift charging capabilities with a refined aesthetic, it guarantees your devices receive rapid and secure power. Welcome to the next generation of charging.","price": 20.00,"currency": "GBP","plug_type": "G","voltage": "230V"}},{"id": "eu1","content": {"name": "PureJuice Pro - Wireless Charger suitable for European plugs","description": "PureJuice Pro: Elevating wireless charging. Combining unparalleled charging speeds with elegant design, it promises both rapid and dependable energy for your devices. Embrace the future of wireless charging.","price": 18.00,"currency": "EUR","plug_type": "C","voltage": "230V"}},{"id": "preview1","content": {"name": "PureJuice Pro - Pre-order next version","description": "Newest version of the PureJuice Pro wireless charger, coming soon! The newest model of the PureJuice Pro boasts a 2x faster charge than the current model, and a sturdier cable with an eighteen month full warranty. We also have a battery backup to charge on-the-go, up to two full charges. Pre-order yours today!","price": 36.00,"currency": "USD","plug_type": ["B", "C", "G"],"voltage": ["230V", "120V"]}}
]

创建应用并展示

我们在当前的目录下打入如下的命令来创建 notebook:

$ pwd
/Users/liuxg/python/elser
$ jupyter notebook

导入包及连接到 Elasticsearch

from elasticsearch import Elasticsearch
from dotenv import load_dotenv
import osload_dotenv()openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")url = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
client = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)print(client.info())

索引一些测试数据

我们的客户端已设置并连接到我们的 Elastic 部署。 现在我们需要一些数据来测试 Elasticsearch 查询的基础知识。 我们将使用具有以下字段的小型产品索引:

  • name
  • description
  • price
  • currency
  • plug_type
  • voltage

运行以下命令上传一些示例数据:

import json# Load data into a JSON object
with open('query-rules-data.json') as f:docs = json.load(f)operations = []
for doc in docs:operations.append({"index": {"_index": "products_index", "_id": doc["id"]}})operations.append(doc["content"])
client.bulk(index="products_index", operations=operations, refresh=True)

我们可以在 Kibana 中进行查看:

搜索测试数据

首先,让我们搜索数据寻找 “reliable wireless charger.”。

在搜索数据之前,我们将定义一些方便的函数,将来自 Elasticsearch 的原始 JSON 响应输出为更易于理解的格式。

def pretty_response(response):if len(response['hits']['hits']) == 0:print('Your search returned no results.')else:for hit in response['hits']['hits']:id = hit['_id']score = hit['_score']name = hit['_source']['name']description = hit['_source']['description']price = hit["_source"]["price"]currency = hit["_source"]["currency"]plug_type = hit["_source"]["plug_type"]voltage = hit["_source"]["voltage"]pretty_output = (f"\nID: {id}\nName: {name}\nDescription: {description}\nPrice: {price}\nCurrency: {currency}\nPlug type: {plug_type}\nVoltage: {voltage}\nScore: {score}")print(pretty_output)def pretty_ruleset(response):print("Ruleset ID: " + response['ruleset_id'])for rule in response['rules']:rule_id = rule['rule_id']type = rule['type']print(f"\nRule ID: {rule_id}\n\tType: {type}\n\tCriteria:")criteria = rule['criteria']for rule_criteria in criteria:criteria_type = rule_criteria['type']metadata = rule_criteria['metadata']values = rule_criteria['values']print(f"\t\t{metadata} {criteria_type} {values}")ids = rule['actions']['ids']print(f"\tPinned ids: {ids}")

接下来,进行搜索

不使用 query rules 的正常搜索

response = client.search(index="products_index", query={"multi_match": {"query": "reliable wireless charger for iPhone","fields": [ "name^5", "description" ]}
})pretty_response(response)

创建 query rules

我们分别假设,我们知道我们的用户来自哪个国家/地区(可能通过 IP 地址或登录的用户帐户信息进行地理位置定位)。 现在,我们希望创建查询规则,以便当人们搜索包含短语 “wireless charger (无线充电器)” 的任何内容时,根据该信息增强无线充电器的性能。

client.query_ruleset.put(ruleset_id="promotion-rules", rules=[{"rule_id": "us-charger","type": "pinned","criteria": [{"type": "contains","metadata": "my_query","values": ["wireless charger"]},{"type": "exact","metadata": "country","values": ["us"]}],"actions": {"ids": ["us1"]}},{"rule_id": "uk-charger","type": "pinned","criteria": [{"type": "contains","metadata": "my_query","values": ["wireless charger"]},{"type": "exact","metadata": "country","values": ["uk"]}],"actions": {"ids": ["uk1"]}}])

为了使这些规则匹配,必须满足以下条件之一:

  • my_query 包含字符串 “wireless charger” 并且 country “us”
  • my_query 包含字符串 “wireless charger” 并且 country 为 “uk”

我们也可以使用 API 查看我们的规则集(使用另一个 Pretty_ruleset 函数以提高可读性):

response = client.query_ruleset.get(ruleset_id="promotion-rules")
pretty_ruleset(response)

response = client.search(index="products_index", query={"rule_query": {"organic": {"multi_match": {"query": "reliable wireless charger for iPhone","fields": [ "name^5", "description" ]}},"match_criteria": {"my_query": "reliable wireless charger for iPhone","country": "us"},"ruleset_id": "promotion-rules"}
})pretty_response(response)

整个 notebook 的源码可以在地址下载:https://github.com/liu-xiao-guo/semantic_search_es/blob/main/search_using_query_rules.ipynb

相关文章:

Elasticsearch:使用查询规则(query rules)进行搜索

在之前的文章 “Elasticsearch 8.10 中引入查询规则 - query rules”,我们详述了如何使用 query rules 来进行搜索。这个交互式笔记本将向你介绍如何使用官方 Elasticsearch Python 客户端来使用查询规则。 你将使用 query rules API 将查询规则存储在 Elasticsearc…...

Java核心设计模式:代理设计模式

一、生活中常见的代理案例 房地产中介:客户手里没有房源信息,找一个中介帮忙商品代购:代理者一般有好的资源渠道,降低购物成本(如海外代购,自己不用为了买东西出国) 二、为什么要使用代理 对…...

JSP编程

JSP编程 您需要理解在JSP API的类和接口中定义的用于创建JSP应用程序的各种方法的用法。此外,还要了解各种JSP组件,如在前一部分中学习的JSP动作、JSP指令及JSP脚本。JSP API中定义的类提供了可借助隐式对象通过JSP页面访问的方法。 1. JSP API的类 JSP API是一个可用于创建…...

【Flink入门修炼】1-1 为什么要学习 Flink?

流处理和批处理是什么? 什么是 Flink? 为什么要学习 Flink? Flink 有什么特点,能做什么? 本文将为你解答以上问题。 一、批处理和流处理 早些年,大数据处理还主要为批处理,一般按天或小时定时处…...

刘谦龙年春晚魔术模拟

守岁共此时 代码 直接贴代码了,异常处理有点问题,正常流程能跑通 package com.yuhan.snginx.util.chunwan;import java.util.*;/*** author yuhan* since 2024/02/10*/ public class CWMS {static String[] num {"A", "2", &quo…...

re:从0开始的CSS学习之路 9. 盒子水平布局

0. 写在前面 过年也不能停止学习,一停下就难以为继,实属不应 1. 盒子的水平宽度 当一个盒子出现在另一个盒子的内容区时,该盒子的水平宽度“必须”等于父元素内容区的宽度 盒子水平宽度: margin-left border-left padding-lef…...

【MySQL基础】:深入探索DQL数据库查询语言的精髓(上)

🎥 屿小夏 : 个人主页 🔥个人专栏 : MySQL从入门到进阶 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一. DQL1.1 基本语法1.2 基础查询1.3 条件查询1.3 聚合函数 🌤️ 全篇…...

JavaScript实现轮播图方法

效果图 先来看下效果图,嫌麻烦就不用具体图片来实现了,主要是理清思路。(自动轮播,左右按钮切换图片,小圆点切换图片,鼠标移入暂停轮播,鼠标移出继续轮播) HTML 首先是html内容&am…...

Web课程学习笔记--jsonp的原理与简单实现

jsonp的原理与简单实现 原理 由于同源策略的限制,XmlHttpRequest只允许请求当前源(域名、协议、端口)的资源,为了实现跨域请求,可以通过script标签实现跨域请求,然后在服务端输出JSON数据并执行回调函数&…...

第78讲 修改密码

系统管理实现 修改密码实现 前端 modifyPassword.vue&#xff1a; <template><el-card><el-formref"formRef":model"form":rules"rules"label-width"150px"><el-form-item label"用户名&#xff1a;&quo…...

Docker 容器网络:C++ 客户端 — 服务器应用程序。

一、说明 在下面的文章中&#xff0c; 将向您概述 docker 容器之间的通信。docker 通信的验证将通过运行 C 客户端-服务器应用程序和标准“ping”命令来执行。将构建并运行两个单独的 Docker 映像。 由于我会关注 docker 网络方面&#xff0c;因此不会提供 C 详细信息。…...

Android 识别车牌信息

打开我们心爱的Android Studio 导入需要的资源 gradle //开源车牌识别安卓SDK库implementation("com.github.HyperInspire:hyperlpr3-android-sdk:1.0.3")button.setOnClickListener(v -> {Log.d("Test", "");try (InputStream file getAs…...

C#在窗体正中输出文字以及输出文字的画刷使用

为了在窗体正中输出文字&#xff0c;需要获得输出文字区域的宽和高&#xff0c;这使用MeasureString方法&#xff0c;方法返回值为Size类型&#xff1b; 然后计算输出的起点的x和y坐标&#xff0c;就可以输出了&#xff1b; using System; using System.Collections.Generic; …...

二十、K8S-1-权限管理RBAC详解

目录 k8s RBAC 权限管理详解 一、简介 二、用户分类 1、普通用户 2、ServiceAccount 三、k8s角色&角色绑定 1、授权介绍&#xff1a; 1.1 定义角色&#xff1a; 1.2 绑定角色&#xff1a; 1.3主体&#xff08;subject&#xff09; 2、角色&#xff08;Role和Cluster…...

【PTA|期末复习|编程题】数组相关编程题(一)

目录 7-1 乘法口诀数列 (20分) 输入格式&#xff1a; 输出格式&#xff1a; 输入样例&#xff1a; 输出样例&#xff1a; 样例解释&#xff1a; 代码 7-2 矩阵列平移(20分) 输入格式&#xff1a; 输出格式&#xff1a; 输入样例&#xff1a; 输出样例&#xff1a; …...

[office] 怎么在Excel2003菜单栏自定义一个选项卡 #其他#微信#知识分享

怎么在Excel2003菜单栏自定义一个选项卡 怎么在Excel2003菜单栏自定义一个选项卡 ①启动Excel2003&#xff0c;单击菜单栏--工具--自定义。 ②在自定义界面&#xff0c;我们单击命令标签&#xff0c;在类别中选择新菜单&#xff0c;鼠标左键按住新菜单&#xff0c;拖放到菜单栏…...

面试 JavaScript 框架八股文十问十答第六期

面试 JavaScript 框架八股文十问十答第六期 作者&#xff1a;程序员小白条&#xff0c;个人博客 相信看了本文后&#xff0c;对你的面试是有一定帮助的&#xff01;关注专栏后就能收到持续更新&#xff01; ⭐点赞⭐收藏⭐不迷路&#xff01;⭐ 1&#xff09;use strict是什么…...

【Web】小白友好的Java内存马基础学习笔记

目录 简介 文件马与内存马的比较 文件马原理 内存马原理 内存马使用场景 内存马分类 内存马注入方式 这篇文章主要是概念性的&#xff0c;具体技术细节不做探究&#xff0c;重点在祛魅。 简介 内存马&#xff08;Memory Shellcode&#xff09;是一种恶意攻击技术&…...

Rust猜数字游戏

Rust进阶&#xff1a;猜数字游戏 Rust是一门现代的系统级编程语言&#xff0c;注重内存安全、并发性能以及表达力。在这篇博客中&#xff0c;我们将深入介绍一个更加复杂的猜数字游戏代码&#xff0c;展示Rust语言的一些高级特性。 代码示例 以下是一个升级版的Rust猜数字游…...

.gitlab-ci.yml文件参数配置和使用

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...