蓝桥杯每日一题------背包问题(一)
点击可观看配套视频讲解
背包问题
阅读小提示:这篇文章稍微有点长,希望可以对背包问题进行系统详细的讲解,在看的过程中如果有任何疑问请在评论区里指出。因为篇幅过长也可以进行选择性阅读,读取自己想要的那一部分即可。
前言
背包问题可以看作动态规划系列入门的一个开端,欢迎开启动态规划之旅,在正式学习之前,我想说的是,动态规划真的不难,与贪心算法比较,动态规划有自己的多种板子,也有自己的多种套路;与高级数据结构比较,动态规划的代码量真的非常友好;与字符串类算法比较,动态规划没有那么抽象,ok话不多说,开始吧。
首先介绍一下动态规划的步骤(我自己总结的,自己用起来感觉还不错,y总也有介绍过闫式dp分析法,大家感兴趣可以看一看,怎么方便怎么来)
求解动态规划有两个大的阶段,分别是定义dp数组和推导状态转移方程。大家觉得这两个哪个重要呢?诚然状态转移方程是动态规划的关键,但是我在做题的过程中感受到当你的dp数组定义正确了,状态转移方程的推导就是自然而然的事情,所以对我来说,最关键的是定义dp数组。我们可以按照下面的步骤定义dp数组。
第一步:缩小规模。大家在大学学到动态规划时,一般都会拿来和贪心比,和分治比,无论哪一个我们都不能一口吃个胖子,都是从最基础的那个地方开始,一步一步往下走,最终走到终点。既然要缩小规模,那必然要有一个维度来定义当前的规模,放在背包问题里,规模就是考虑的物品的个数,那么用一个维度就可以了,放在区间dp里,规模是区间的大小,而不同的区间结果是不一样的,所以需要两个维度来表示区间的左右端点。
第二步:限制。放在背包问题里,限制就是背包的容量,你选的物品的总体积不能超过当前背包容量,所以你需要一个维度来表示当前的体积。
第三步:写出dp数组。走到这里,根据规模和限制定义了dp数组,dp[i][j]表示当前考虑了前i个物品,背包容量为j时能够装的最大价值。我们求的就是最大价值,那么dp数组对应的值就是最大价值,一般和所求是一样的,求什么就记录什么。
第四步:修改dp数组。这一步就是在写状态转移方程时,你发现定义的dp数组维度少了,还需要其它信息,那么这个时候就是需要什么往dp数组里面加什么,即增加维度,但是要注意一点,一般dp数组的维度和时间复杂度是正相关的,维度过多,很有可能超时。
01背包
定义dp数组
第一步:缩小规模。考虑n个物品,那我就先考虑1个物品,在考虑2个物品…,需要一个维度表示当前考虑的物品个数。
第二步:限制。所选物品个数不能超过背包容量,那么需要一个维度记录当前背包的容量。
第三步:写出dp数组。dp[i][j]表示当前考虑了前i个物品,背包容量为j时的最大价值。
第四步:推状态转移方程。dp[i][j]应该从哪里转移过来呢,必然是从前i-1个物品转移,我要考虑两种情况,对于第i个物品,可以选择要它,也可以不要它,如果要第i个物品,我就需要背包里面给我预留出第i个物品的体积,也就是从a[i-1][j-v[i]]转移,同时也能获得该物品的价值。如果不要第i个物品,那么之前从前一个状态相同容量的背包转移过来就行,即a[i-1][j]。
综上状态转移方程如下
a[i][j] = max(a[i-1][j],a[i-1][j-v[i]]+w[i])
考虑写代码了
第一步:确定好遍历顺序,对于背包问题,一般第一个for遍历规模,第二个for遍历限制。
for(int i = 1;i <= n;i++) {for(int j = 1;j <= m;j++) {dp[i][j] = dp[i-1][j];//为什么要在这里转移,因为这个转移是一定会发生的,而另一个转移不一定会发生if(j>=v[i])dp[i][j] = Math.max(dp[i-1][j-v[i]]+w[i], dp[i][j]);}}
第二步:考虑是否要对dp数组初始化,这里不需要,因为最开始的状态考虑前0个物体,它的值就是0,不需要管。
全部代码如下,
import java.util.Scanner;
public class Main {
public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int V = scanner.nextInt();int[] v = new int[n+1];int[] w = new int[n+1];for (int i = 1; i < w.length; i++) {v[i] = scanner.nextInt();w[i] = scanner.nextInt();}int[][] dp = new int[n+1][V+1];
// for (int i = 0; i < dp.length; i++) {
// dp[0][i] = 1;
// }for (int i = 1; i < dp.length; i++) {for (int j = 0; j < V+1; j++) {dp[i][j] = Math.max(dp[i][j], dp[i-1][j]);if(v[i]<=j) {dp[i][j] = Math.max(dp[i][j], dp[i-1][j-v[i]]+w[i]);}}}System.out.println(dp[n][V]);
}
}
考虑对dp数组进行维度优化,这里的优化并不会降低它的时间复杂度,但是可以减低空间复杂度,提高空间利用率,并且它也可以算是滚动dp的一个例子,而且里面有一个思想在后续做题的过程中也需会用到!
我们考虑一下在转移的过程中我只用了a[i]和a[i-1]对于a[i-2],a[i-3]我后续都用不到了,所以没有必要存它,考虑如果我只用一个一维的dp,思路还是一样的,但是代码该怎么写。
令dp[i]表示背包容量为i时最多能容纳的物品价值。自己尝试把代码里表示物品个数的那一维删掉,就成了
import java.util.Scanner;
public class Main {
public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int V = scanner.nextInt();int[] v = new int[n+1];int[] w = new int[n+1];for (int i = 1; i < w.length; i++) {v[i] = scanner.nextInt();w[i] = scanner.nextInt();}int[] dp = new int[V+1];for (int i = 1; i < dp.length; i++) {for (int j = 0; j < V+1; j++) {//dp[j] = Math.max(dp[j], dp[j]);if(v[i]<=j) {dp[j] = Math.max(dp[j], dp[j-v[i]]+w[i]);}}}System.out.println(dp[V]);
}
}
直接这样提交可以过吗?当然不可以,我们还记得我们的题目是每个物品只有一个吗?我们分析一下dp[j] = Math.max(dp[j], dp[j-v[i]]+w[i]);
假设当前遍历到了i=5,假设j=5时,dp[j]=dp[j-v[i]]+w[i].说明此时我们拿了第5个物品,当遍历到j=10时假设此时v[i]=5,dp[10]=dp[10-5]+w[i]=dp[5]+w[i],可以看见dp[10]是从dp[5]转移的,但是我们的本意是不是dp[5]表示的应该是i=4时的结果,但是刚刚我们也看见了,遍历到dp[10]时,dp[5]已经被更新了,它不是i=4时的dp[5],所以会出错。好,我们再深究一下,出错的结果是啥?dp[5]是不是已经选了物品5了?此时dp[10]==dp[5]+w[i]又选了一次物品5,说明物品5被选了多次,而题目要求每个物品只能选一次,所以不符合题意。如果改一改,改成每个物品可以选无数次,那么这里就是没有问题,记住这一点。
回到这个题目,那我们应该怎么改,在求dp[10]时,会用到dp[5],归纳一下,在求dp[i]时,会用到dpj,我们在遍历到i之前不能动dp[j]。也就是说,先遍历大的数,所以我们直接倒序遍历就行了。来看代码吧,
for (int j = 0; j < n; j++) {for (int i = k; i >= v[j]; i--) {//i<v[j]时不能转移,所以直接遍历到v[j]就行,这样后面就不用if语句判断是否能转移了。dp[i] = Math.max(dp[i], dp[i - v[j]] + w[j]);}}
全部代码
import java.io.IOException;
import java.util.Scanner;
public class Main {public static void main(String[] args) throws IOException {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int k = scanner.nextInt();int[] v = new int[n];int[] w = new int[n];for (int i = 0; i < n; i++) {v[i] = scanner.nextInt();w[i] = scanner.nextInt();}int[] dp = new int[k + 1];for (int j = 0; j < n; j++) {for (int i = k; i >= v[j]; i--) {// System.out.println("---");dp[i] = Math.max(dp[i], dp[i - v[j]] + w[j]);}}System.out.println(dp[k]);}
}
借此机会,再讲一下滚动dp,他不算是单独的一种dp,只是对dp的一种空间优化方法,防止爆内存。刚刚讲过,在dp数组遍历的过程中我只用到了当前为i时的状态和前一个为i-1时的状态,其它的都不要了,所以其实我可以把dp[n+1][V+1],变成dp[2][V+1],如果dp[0][V+1]表示考虑了前0个物品的状态,遍历到i=1时,用dp[1][V+1]表示考虑了前1个物品的状态,遍历到i=2时,前0个物品的状态我不需要记录了,此时可以拿dp[0][V+1]表示考虑了前2个物品的状态,如此循环往复。可以发现这是交替使用的,那么数字里面什么是交替出现的?奇偶数呀,所以可以用奇偶数来判断,如dp[i&1][j]和dp[(i-1)&1][j]。在使用滚动dp时,其实修改很好修改,只要在你原来的代码里,注意是使用二维数组的那个代码哈,把dp[i][j]和dp[i-1][j]改成dp[i&1][j]和dp[(i-1)&1][j]就行了。因此它也不易出错,比起刚刚介绍的直接把dp数组减少一维。看代码吧。
import java.io.IOException;
import java.util.Scanner;
public class Main {public static void main(String[] args) throws IOException {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int k = scanner.nextInt();int[] v = new int[n + 1];int[] w = new int[n + 1];for (int i = 1; i <= n; i++) {v[i] = scanner.nextInt();w[i] = scanner.nextInt();}int[][] dp = new int[2][k + 1];for (int i = 1; i <= n; i++) {for (int j = 0; j <= k; j++) {// System.out.println(i + " " + j + " ---------");if (j >= v[i]) {dp[i&1][j] = Math.max(dp[(i - 1)&1][j], dp[(i - 1)&1][j - v[i]] + w[i]);} else {// System.out.println(i + " " + j);dp[i&1][j] = dp[(i - 1)&1][j];}}}System.out.println(dp[n&1][k]);}
}
完全背包
完全背包和01背包的不同在于完全背包对每个物品的可选次数没有限制,那么在遍历的时候就会比原来多出一个维度,dp数组的定义还是一样的,dp[i][j]表示考虑前i个物品当前背包容量为j时的最大价值。那么可选物品不受限制如何体现呢?
01背包在递推dp数组时有两个嵌套for循环,第一层遍历当前考虑前i个物品,第二层遍历当前背包的容量为j,那么我们需要加入一个维度,这个维度表示选择j2个第i个物品,完整代码如下
import java.util.Scanner;
public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int k = scanner.nextInt();int[] v = new int[n + 1];int[] w = new int[n + 1];for (int i = 1; i <= n; i++) {v[i] = scanner.nextInt();w[i] = scanner.nextInt();}int[][] dp = new int[n + 1][k + 1];for (int i = 1; i <= n; i++) {for (int j = 1; j < k + 1; j++) {for (int j2 = 0; j2 * v[i] <= j; j2++) {dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - j2 * v[i]] + j2 * w[i]);}}}System.out.println(dp[n][k]);}
}
此时的复杂度就是 O ( n 3 ) O(n^3) O(n3)。我们来回顾一下,我们之前有没有类似的代码。在将01背包压缩成1维时,我们是不是有一种错误写法,第二维如果正序遍历会导致同一个物品被多次选择,这对于01背包来说是不合题意的,但是正好符合完全背包的要求,所以之前那个错误的代码完全可以用到完全背包上,并且这个的时间复杂度只需要 O ( n 2 ) O(n^2) O(n2),代码如下。
import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int k = scanner.nextInt();int[] v = new int[n + 1];int[] w = new int[n + 1];for (int i = 1; i <= n; i++) {v[i] = scanner.nextInt();w[i] = scanner.nextInt();}int[] dp = new int[k + 1];for (int i = 1; i <= n; i++) {
// for (int j = 0; j < dp.length && j >= v[i]; j++) {for (int j = v[i]; j < dp.length; j++) {
// System.out.println(dp[i] + " " + (dp[j - v[i]] + w[i]) + " " + i + " " + j);dp[j] = Math.max(dp[j], dp[j - v[i]] + w[i]);}}
// for (int i = 0; i < dp.length; i++) {
// System.out.print(dp[i] + " ");
// }System.out.println(dp[k]);}
}
相关文章:

蓝桥杯每日一题------背包问题(一)
点击可观看配套视频讲解 背包问题 阅读小提示:这篇文章稍微有点长,希望可以对背包问题进行系统详细的讲解,在看的过程中如果有任何疑问请在评论区里指出。因为篇幅过长也可以进行选择性阅读,读取自己想要的那一部分即可。 前言…...
面试 JavaScript 框架八股文十问十答第八期
面试 JavaScript 框架八股文十问十答第八期 作者:程序员小白条,个人博客 相信看了本文后,对你的面试是有一定帮助的!关注专栏后就能收到持续更新! ⭐点赞⭐收藏⭐不迷路!⭐ 1)实现call、apply…...

【机器学习】单变量线性回归
文章目录 线性回归模型(linear regression model)损失/代价函数(cost function)——均方误差(mean squared error)梯度下降算法(gradient descent algorithm)参数(parame…...

《计算思维导论》笔记:10.4 关系模型-关系运算
《大学计算机—计算思维导论》(战德臣 哈尔滨工业大学) 《10.4 关系模型-关系运算》 一、引言 本章介绍数据库的基本数据模型:关系模型-关系运算。 二、什么是关系运算 在数据库理论中,关系运算(Relational Operatio…...
QT+OSG/osgEarth编译之八十四:osgdb_osg+Qt编译(一套代码、一套框架,跨平台编译,版本:OSG-3.6.5插件库osgdb_osg)
文章目录 一、osgdb_osg介绍二、文件分析三、pro文件四、编译实践一、osgdb_osg介绍 osgDB是OpenSceneGraph(OSG)库中的一个模块,用于加载和保存3D场景数据。osgDB_osg是osgDB模块中的一个插件,它提供了对OSG格式的支持。 OSG格式是OpenSceneGraph库使用的一种二进制文件…...

【Redis快速入门】初识Redis、Redis安装、图形化界面
个人名片: 🐼作者简介:一名大三在校生,喜欢AI编程🎋 🐻❄️个人主页🥇:落798. 🐼个人WeChat:hmmwx53 🕊️系列专栏:🖼️…...

Linux(Ubuntu) 环境搭建:Nginx
注:服务器默认以root用户登录 NGINX 官方网站地址:https://nginx.org/en/NGINX 官方安装文档地址:https://nginx.org/en/docs/install.html服务器的终端中输入以下指令: # 安装 Nginx apt-get install nginx # 查看版本信息 ngi…...
快速手动完成 VS 编写脚本自动化:如何选取最高效的工作方式?
那些不懂技术的朋友们可能会觉得,写代码写脚本不就是敲敲键盘嘛,搞那么高科技做什么,直接手工点点鼠标不就完事了。 这种看法很常见,但实际情况要复杂得多。 首先,手工操作虽然对于短期和小规模的任务来说似乎更快&am…...

FAST角点检测算法
FAST(Features from Accelerated Segment Test)角点检测算法是一种快速且高效的角点检测方法。它通过检测每个像素周围的连续像素集合,确定是否为角点。以下是 FAST 角点检测算法的基本流程: FAST 角点检测算法的基本过程主要包括…...

Python中使用opencv-python进行人脸检测
Python中使用opencv-python进行人脸检测 之前写过一篇VC中使用OpenCV进行人脸检测的博客。以数字图像处理中经常使用的lena图像为例,如下图所示: 使用OpenCV进行人脸检测十分简单,OpenCV官网给了一个Python人脸检测的示例程序,…...
牛客网 DP3跳台阶扩展问题
在原始跳台阶问题上,我们知道只走1,2阶台阶的话,可以推出来斐波那契数列的形式进行计算操作。但是,在这里就是1,2,3,...n阶台阶了。其实思路是一样的。 在原始台阶问题,我们的状态方…...
ARM汇编[1] 打印格式化字符串(printf
文章目录 写在前面关键知识简单加减乘除函数调用和循环系统调用栈的使用 GDB调试示例代码 写在前面 如果您对ARM汇编还一无所知的话请先参考ARM汇编hello world 本篇不会广泛详细的列举各种指令,仍然只讲解最关键的部分,然后使用他们来完成一个汇编程序…...

Java 集合、迭代器
Java 集合框架主要包括两种类型的容器,一种是集合(Collection),存储一个元素集合,另一种是图(Map),存储键/值对映射。Collection 接口又有 3 种子类型,List、Set 和 Queu…...

在 Docker 中启动 ROS2 里的 rivz2 和 rqt 出现错误的解决方法
1. 出现错误: 运行 ros2 run rivz2 rivz2 ,报错如下 : No protocol specified qt.qpa.xcb: could not connect to display :1 qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was f…...

使用securecrt+xming通过x11访问ubuntu可视化程序
windows使用securecrtxming通过x11访问ubuntu可视化程序 windows机器IP:192.168.9.133 ubuntu-desktop20.04机器IP:192.168.9.190 windows下载xming并安装 按照图修改xming配置 开始->xming->Xlaunch 完成xming会在右下角后台运行 windows在…...

红队打靶练习:HEALTHCARE: 1
目录 信息收集 1、arp 2、nmap 3、nikto 4、whatweb 目录探测 1、gobuster 2、dirsearch WEB web信息收集 gobuster cms sqlmap 爆库 爆表 爆列 爆字段 FTP 提权 信息收集 本地提权 信息收集 1、arp ┌──(root㉿ru)-[~/kali] └─# arp-scan -l Inte…...
Java IO:概念和分类总结
前言 大家好,我是chowley,刚看完Java IO方面内容,特此总结一下。 Java IO Java IO(输入输出)是Java编程中用于处理输入和输出的API。它提供了一套丰富的类和方法,用于读取和写入数据到不同的设备、文件和…...
【Linux】基本命令(下)
目录 head指令 && tail指令 head指令 tail指令 find指令 grep指令 zip/unzip指令 tar指令 时间相关的指令 date显示 1.在显示方面,使用者可以设定欲显示的格式,格式设定为一个加号后接数个标记,其中常用的标记列表如下&…...

腾讯云游戏联机服务器配置价格表,4核16G/8核32G/4核32G/16核64G
2024年更新腾讯云游戏联机服务器配置价格表,可用于搭建幻兽帕鲁、雾锁王国等游戏服务器,游戏服务器配置可选4核16G12M、8核32G22M、4核32G10M、16核64G35M、4核16G14M等配置,可以选择轻量应用服务器和云服务器CVM内存型MA3或标准型SA2实例&am…...

面试经典150题——长度最小的子数组
"In the midst of winter, I found there was, within me, an invincible summer." - Albert Camus 1. 题目描述 2. 题目分析与解析 首先理解题意,题目要求我们找到一个长度最小的 连续子数组 满足他们的和大于target,需要返回的是子数组的…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...