当前位置: 首页 > news >正文

「递归算法」:二叉树剪枝

一、题目

给你二叉树的根结点 root ,此外树的每个结点的值要么是 0 ,要么是 1 。

返回移除了所有不包含 1 的子树的原二叉树。

节点 node 的子树为 node 本身加上所有 node 的后代。

示例 1:

输入:root = [1,null,0,0,1]
输出:[1,null,0,null,1]
解释:
只有红色节点满足条件“所有不包含 1 的子树”。 右图为返回的答案。

示例 2:

输入:root = [1,0,1,0,0,0,1]
输出:[1,null,1,null,1]

示例 3:

输入:root = [1,1,0,1,1,0,1,0]
输出:[1,1,0,1,1,null,1]

提示:

  • 树中节点的数目在范围 [1, 200] 内
  • Node.val 为 0 或 1

二、思路解析

忽然发现讲了好几篇二叉树的例题,其中涉及到的 “剪枝” 操作我都是一笔带过。这不,今天我找了一道剪枝的题目,我们一块品味一番。

我们先从名字上理解一下,所谓剪枝,就是把树木上的低质量树枝剪掉,以促进整颗树木更好地生长。

而我们今天所讲的剪枝,其实大体也是类似意思,只不过是把 “值为空” 的节点删去。

理解了这些,相信这道题的答案已经浮出水面了,下面是详细代码👇

三、完整代码

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public TreeNode pruneTree(TreeNode root) {if(root == null){return null;}root.left = pruneTree(root.left);root.right = pruneTree(root.right);if(root.left == null && root.right == null && root.val == 0){root = null;}return root;}
}

以上就是本篇博客的全部内容啦,如有不足之处,还请各位指出,期待能和各位一起进步!

相关文章:

「递归算法」:二叉树剪枝

一、题目 给你二叉树的根结点 root ,此外树的每个结点的值要么是 0 ,要么是 1 。 返回移除了所有不包含 1 的子树的原二叉树。 节点 node 的子树为 node 本身加上所有 node 的后代。 示例 1: 输入:root [1,null,0,0,1] 输出&…...

Kafka下载(kafka和jdk、zookeeper、SpringBoot的版本对应关系)

文章目录 一、准备工作1、必须环境2、kafka使用自带的zookeeper还是自己单独部署zookeeper?二、下载一、准备工作 1、必须环境 kafka本身的开发语言是Scala,而Scala是基于jdk开发的,所以要先安装jdk kafka版本jdk版本kafka使用jdk版本官网说明1.0建议使用1.8https://kafka.…...

自然语言NLP

什么是NLP NLP(Natural Language Processing)是自然语言处理的缩写,是计算机科学和人工智能领域的一个研究方向。NLP致力于使计算机能够理解、处理和生成人类自然语言的能力。通过NLP技术,计算机可以通过识别和理解语言中的文本…...

容器库(5)-std::list

std::forward_list是可以从任何位置快速插入和移除元素的容器,不支持快速随机访问,支持正向和反向的迭代。 本文章的代码库: https://gitee.com/gamestorm577/CppStd 成员函数 构造、析构和赋值 构造函数 可以用元素、元素列表、迭代器…...

配置VMware实现从服务器到虚拟机的一键启动脚本

正文共:1666 字 15 图,预估阅读时间:2 分钟 首先祝大家新年快乐!略备薄礼,18000个红包封面来讨个开年好彩头! 虽然之前将服务器放到了公网(成本增加了100块,内网服务器上公网解决方案…...

第5讲小程序微信用户登录实现

小程序微信用户登录实现 小程序登录和jwt,httpclient工具类详细介绍可以看下小锋老师的 小程序电商系统课程:https://www.bilibili.com/video/BV1kP4y1F7tU application.yml加上小程序登录需要的参数,小伙伴们可以登录小程序后台管理&#…...

Kong 负载均衡

负载均衡是一种将API请求流量分发到多个上游服务的方法。负载均衡可以提高整个系统的响应速度,通过防止单个资源过载而减少故障。 在以下示例中,您将使用部署在两台不同服务器或上游目标上的应用程序。Kong网关需要在这两台服务器之间进行负载均衡&…...

基于Chrome插件的Chatgpt对话无损导出markdown格式(Typora完美显示)

Google插件名称为:ChatGPT to MarkDown plus, 下载地址为ChatGPT to MarkDown plus使用方法:见GitHub主页或插件介绍页面https://github.com/thisisbaiy/ChatGPT-To-Markdown-google-plugin/tree/main 我将源代码上传至了GitHub,欢迎star, Is…...

react函数组件中使用context

效果 1.在父组件中创建一个createcontext并将他导出 import React, { createContext } from react import Bpp from ./Bpp import Cpp from ./Cpp export let MyContext createContext(我是组件B) export let Ccontext createContext(我是组件C)export default function App…...

【MATLAB源码-第137期】基于matlab的NOMA系统和OFDMA系统对比仿真。

操作环境: MATLAB 2022a 1、算法描述 NOMA(非正交多址)和OFDMA(正交频分多址)是两种流行的无线通信技术,广泛应用于现代移动通信系统中,如4G、5G和未来的6G网络。它们的设计目标是提高频谱效…...

【FPGA Verilog】各种加法器Verilog

1bit半加器adder设计实例 module adder(cout,sum,a,b); output cout; output sum; input a,b; wire cout,sum; assign {cout,sum}ab; endmodule 解释说明 (1)assign {cout,sum}ab 是连续性赋值 对于线网wire进行赋值,必须以assign或者dea…...

【MySQL】-21 MySQL综合-7(MySQL主键+MySQL外检约束+MySQL唯一约束+MySQL检查约束)

MySQL主键MySQL外检约束MySQL唯一约束MySQL检查约束 MySQL主键选取设置主键约束的字段在创建表时设置主键约束在创建表时设置复合主键在修改表时添加主键约束 MySQL外键约束选取设置 MySQL 外键约束的字段在创建表时设置外键约束在修改表时添加外键约束删除外键约束 MySQL唯一约…...

【大厂AI课学习笔记】【1.6 人工智能基础知识】(3)神经网络

深度学习是机器学习中一种基于对数据进行表征学习的算法。观测值(例如一幅草莓照片)可以使用 多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。 深度学习的最主要特征是使用神经网络作为计算模型。神经网络模型 …...

指针的基本含义及其用法

1.前言 在学习C语言的时候,我们会经常接触一个概念,指针和地址,关于这两个概念很多人并不能理解地十分透彻,接下来我将详细介绍一下这两者的概念 2.地址 我们知道计算机的上CPU(中央处理器)在处理数据的时…...

黄金交易策略(Nerve Nnife.mql4):趋势做单

完整EA:Nerve Knife.ex4黄金交易策略_黄金趋势ea-CSDN博客 当大小趋势相同行情走向也相同,就会开仓做顺势单,并会顺势追单,以达到快速止盈平仓的效果。大趋势追求稳定,小趋势追求敏捷,行情走向比小趋势更敏…...

HiveSQL——条件判断语句嵌套windows子句的应用

注:参考文章: SQL条件判断语句嵌套window子句的应用【易错点】--HiveSql面试题25_sql剁成嵌套判断-CSDN博客文章浏览阅读920次,点赞4次,收藏4次。0 需求分析需求:表如下user_idgood_namegoods_typerk1hadoop1011hive1…...

ClickHouse--01--简介

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1. ClickHouse 简介官网: [https://clickhouse.com/docs/zh](https://clickhouse.com/docs/zh) 1.1 大数据处理场景1.2 什么是 ClickHouse1.3 OLAP 场景…...

【Django-ninja】在django ninja中处理异常

1. 直接抛内置异常 Django ninja内置了一些常用异常类。 from ninja.errors import HttpErrorapi.get("/some/resource") def some_operation(request):if True:raise HttpError(503, "Service Unavailable. Please retry later.")2. 覆写异常类 可以覆…...

【并发编程】原子累加器

📝个人主页:五敷有你 🔥系列专栏:并发编程 ⛺️稳重求进,晒太阳 JDK8之后有专门做累加的类,效率比自己做快数倍以上 累加器性能比较 参数是方法 // supplier 提供者 无中生有 ()->结果// func…...

Java 基于微信小程序的电子商城购物系统

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...