λ-矩阵的多项式展开
原文链接
定义. 对于 m × n m \times n m×n 的 λ \lambda λ-矩阵 A ( λ ) = [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)=\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdots \\ a_{m1}(\lambda) & ... & a_{mn}(\lambda) \end{bmatrix} A(λ)= a11(λ)⋮am1(λ)......a1n(λ)⋮amn(λ)
称 L = max 1 ≤ i ≤ m 1 ≤ j ≤ n deg { a i j ( λ ) } L=\max\limits_{1\leq i\leq m\atop{1\leq j \leq n}}\deg \{a_{ij}(\lambda)\} L=1≤j≤n1≤i≤mmaxdeg{aij(λ)} 为 A ( λ ) \mathbf{A}(\lambda) A(λ) 的次数, 显然每个元素的次数不超过 L L L.
定理. 对于 m × n m \times n m×n 的 λ \lambda λ-矩阵 A ( λ ) \mathbf{A}(\lambda) A(λ), 次数为 L L L, 存在唯一的一组常数 m × n m \times n m×n 矩阵 A 0 \mathbf{A}_0 A0, . . . ... ..., A L \mathbf{A}_{L} AL, 使得: A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL (称之为 A ( λ ) \mathbf{A}(\lambda) A(λ) 的多项式展开式).
存在性: 设
A ( λ ) = [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)=\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdots \\ a_{m1}(\lambda) & ... & a_{mn}(\lambda) \end{bmatrix} A(λ)= a11(λ)⋮am1(λ)......a1n(λ)⋮amn(λ)
其中 a i j ( λ ) = a i j 0 + a i j 1 λ + . . . + a i j L λ L , 1 ≤ i ≤ m , 1 ≤ j ≤ n a_{ij}(\lambda)=a_{ij}^{0}+a_{ij}^{1}\lambda + ... + a_{ij}^{L}\lambda^{L}, \ 1 \leq i \leq m, \ 1 \leq j \leq n aij(λ)=aij0+aij1λ+...+aijLλL, 1≤i≤m, 1≤j≤n, 令 A r = [ a 11 r . . . a 1 n r ⋮ ⋮ a m 1 r . . . a m n r ] , 0 ≤ r ≤ L \mathbf{A}_{r}=\begin{bmatrix} a_{11}^{r} & ... & a_{1n}^{r}\\ \vdots & & \vdots \\ a_{m1}^{r} & ... & a_{mn}^{r} \end{bmatrix},\ 0\leq r\leq L Ar= a11r⋮am1r......a1nr⋮amnr , 0≤r≤L
则可以将 A ( λ ) \mathbf{A}(\lambda) A(λ) 表示为 A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL.
唯一性: 若不唯一, 则设存在另外一组 m × n m \times n m×n 矩阵 A 0 ′ \mathbf{A}'_0 A0′, …, A L ′ \mathbf{A}'_{L} AL′, 使得: A ( λ ) = A 0 ′ + A 1 ′ λ + . . . + A L ′ λ L \mathbf{A}(\lambda)=\mathbf{A}'_{0}+\mathbf{A}'_{1}\lambda+...+\mathbf{A}'_{L}\lambda^{L} A(λ)=A0′+A1′λ+...+AL′λL.
A ( λ ) = A 0 + A 1 λ + . . . + A L λ L = A 0 ′ + A 1 ′ λ + . . . + A L ′ λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L}=\mathbf{A}'_{0}+\mathbf{A}'_{1}\lambda+...+\mathbf{A}'_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL=A0′+A1′λ+...+AL′λL
( A 0 − A 0 ′ ) + ( A 1 − A 1 ′ ) λ + . . . + ( A L − A L ′ ) λ L = 0 (\mathbf{A}_{0}-\mathbf{A}'_{0})+(\mathbf{A}_{1}-\mathbf{A}'_{1})\lambda+...+(\mathbf{A}_{L}-\mathbf{A}'_{L})\lambda^L=\mathbf{0} (A0−A0′)+(A1−A1′)λ+...+(AL−AL′)λL=0
比较系数可知 A 0 = A 0 ′ \mathbf{A}_{0}=\mathbf{A}'_{0} A0=A0′,…, A L = A L ′ \mathbf{A}_{L}=\mathbf{A}'_{L} AL=AL′. 矛盾.
存在性的过程也提供了展开式的求法.
定理. A ( λ ) \mathbf{A}(\lambda) A(λ) 和 B ( λ ) \mathbf{B}(\lambda) B(λ) 是 n n n 阶 λ \lambda λ-矩阵, 记 deg A ( λ ) = L \deg \mathbf{A}(\lambda)=L degA(λ)=L, deg B ( λ ) = M \deg \mathbf{B}(\lambda)=M degB(λ)=M, 有: L , M > 0 L, M \gt 0 L,M>0, 且 B ( λ ) \mathbf{B}(\lambda) B(λ) 的多项式展开式中 λ M \lambda^{M} λM 项的系数矩阵可逆, 则存在 n n n 阶 λ \lambda λ-矩阵 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ), deg V ( λ ) < M \deg\mathbf{V}(\lambda)<M degV(λ)<M, 使得 A ( λ ) = U ( λ ) B ( λ ) + V ( λ ) \mathbf{A}(\lambda)=\mathbf{U}(\lambda)\mathbf{B}(\lambda)+\mathbf{V}(\lambda) A(λ)=U(λ)B(λ)+V(λ).
证明: 当 L < M L<M L<M 时, 令 U ( λ ) = 0 \mathbf{U}(\lambda)=\mathbf{0} U(λ)=0, V ( λ ) = A ( λ ) \mathbf{V}(\lambda)=\mathbf{A}(\lambda) V(λ)=A(λ), 显然 U ( λ ) \mathbf{U}(\lambda) U(λ) 和 V ( λ ) \mathbf{V}(\lambda) V(λ) 即为所求. 接下来用数学归纳法证明当 L ≥ M L\geq M L≥M 时结论成立:
当 L = M = 1 L=M=1 L=M=1 时, 设 A ( λ ) = A 0 + A 1 λ \mathbf{A}(\lambda)=\mathbf{A}_0+\mathbf{A}_1 \lambda A(λ)=A0+A1λ, B ( λ ) = B 0 + B 1 λ \mathbf{B}(\lambda)=\mathbf{B}_0+\mathbf{B}_1 \lambda B(λ)=B0+B1λ, 令 U ( λ ) = A 1 B 1 − 1 \mathbf{U}(\lambda)=\mathbf{A}_1\mathbf{B}_{1}^{-1} U(λ)=A1B1−1, V ( λ ) = A 0 − A 1 B 1 − 1 \mathbf{V}(\lambda)=\mathbf{A}_0-\mathbf A_1\mathbf B_{1}^{-1} V(λ)=A0−A1B1−1 即为所求.
若结论对于 L = k L=k L=k 成立, 当 L = k + 1 L=k+1 L=k+1 时: 设 A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL, B ( λ ) = B 0 + B 1 λ + . . . + B M λ M \mathbf{B}(\lambda)=\mathbf{B}_{0}+\mathbf{B}_{1}\lambda+...+\mathbf{B}_{M}\lambda^{M} B(λ)=B0+B1λ+...+BMλM, 令 A ′ ( λ ) = A ( λ ) − A L B M − 1 λ L − M B ( λ ) \mathbf {A}'(\lambda) = \mathbf{A}(\lambda)-\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}\mathbf{B}(\lambda) A′(λ)=A(λ)−ALBM−1λL−MB(λ), 易验证 A ′ ( λ ) \mathbf{A}'(\lambda) A′(λ) 次数小于 L L L, 根据归纳假设, 存在 n n n 阶 λ \lambda λ-矩阵 U ′ ( λ ) \mathbf{U}'(\lambda) U′(λ), V ′ ( λ ) \mathbf{V}'(\lambda) V′(λ), deg V ′ ( λ ) < M \deg\mathbf{V}'(\lambda)<M degV′(λ)<M, 使得 A ′ ( λ ) = U ′ ( λ ) B ( λ ) + V ′ ( λ ) \mathbf{A}'(\lambda)=\mathbf{U}'(\lambda)\mathbf{B}(\lambda)+\mathbf{V}'(\lambda) A′(λ)=U′(λ)B(λ)+V′(λ). 进而有 A ( λ ) = [ A L B M − 1 λ L − M + U ′ ( λ ) ] B ( λ ) + V ′ ( λ ) \mathbf{A}(\lambda)=[\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}+\mathbf{U}'(\lambda)]\mathbf{B}(\lambda)+\mathbf{V}'(\lambda) A(λ)=[ALBM−1λL−M+U′(λ)]B(λ)+V′(λ). 定义 U ( λ ) = A L B M − 1 λ L − M + U ′ ( λ ) \mathbf{U}(\lambda)=\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}+\mathbf{U}'(\lambda) U(λ)=ALBM−1λL−M+U′(λ), V ( λ ) = V ′ ( λ ) \mathbf{V}(\lambda)=\mathbf{V}'(\lambda) V(λ)=V′(λ), 显然 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ) 即为所求.
同理可证明: A ( λ ) \mathbf{A}(\lambda) A(λ) 和 B ( λ ) \mathbf{B}(\lambda) B(λ) 是 n n n 阶 λ \lambda λ-矩阵, 记 deg A ( λ ) = L \deg \mathbf{A}(\lambda)=L degA(λ)=L, deg B ( λ ) = M \deg \mathbf{B}(\lambda)=M degB(λ)=M, 有: L , M > 0 L, M \gt 0 L,M>0, 且 B M \mathbf{B}_{M} BM 可逆, 则存在 n n n 阶 λ \lambda λ-矩阵 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ), deg V ( λ ) < M \deg\mathbf{V}(\lambda)<M degV(λ)<M, 使得 A ( λ ) = A ( λ ) U ( λ ) + V ( λ ) \mathbf{A}(\lambda)=\mathbf{A}(\lambda)\mathbf{U}(\lambda)+\mathbf{V}(\lambda) A(λ)=A(λ)U(λ)+V(λ).
相关文章:
λ-矩阵的多项式展开
原文链接 定义. 对于 m n m \times n mn 的 λ \lambda λ-矩阵 A ( λ ) [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdo…...

如何在PDF 文件中删除页面?
查看不同的工具以及解释如何在 Windows、Android、macOS 和 iOS 上从 PDF 删除页面的步骤: PDF 是最难处理的文件格式之一。曾经有一段时间,除了阅读之外,无法用 PDF 做任何事情。但是今天,有许多应用程序和工具可以让您用它们做…...
蓝桥杯官网填空题(质数拆分)
问题描述 将 2022 拆分成不同的质数的和,请问最多拆分成几个? 答案提交 本题为一道结果填空的题,只需要算出结果后,在代码中使用输出语句将结果输出即可。 运行限制 import java.util.Scanner;public class Main {static int …...

【数据结构】二叉树的顺序结构及链式结构
目录 1.树的概念及结构 1.1树的概念 1.2树的相关概念 编辑 1.3树的表示 1.4树在实际中的运用(表示文件系统的目录树结构) 2.二叉树概念及结构 2.1二叉树的概念 2.2现实中的二叉树 编辑 2.3特殊的二叉树 2.4二叉树的性质 2.5二叉树的存储结…...

海外IP代理:解锁网络边界的实战利器
文章目录 引言:正文:一、Roxlabs全球IP代理服务概览特点:覆盖范围:住宅IP真实性:性价比:在网络数据采集中的重要性: 二、实战应用案例一:跨境电商竞品分析步骤介绍:代码示…...

如何写好一个简历
如何编写求职简历 论Java程序员求职中简历的重要性 好简历的作用 在求职过程中,一份好的简历是非常重要的,它甚至可以直接决定能否被面试官认可。一份出色或者说是成功的个人简历,最根本的作用是能让看这份简历的人产生一定要见你的强烈愿…...

【AutoML】AutoKeras 进行 RNN 循环神经网络训练
由于最近这些天都在人工审查之前的哪些问答数据,所以迟迟都没有更新 AutoKeras 的训练结果。现在那部分数据都已经整理好了,20w 的数据最后能够使用的高质量数据只剩下 2k。这 2k 的数据已经经过数据校验并且对部分问题的提问方式和答案内容进行了不改变…...

H12-821_74
74.在某路由器上查看LSP,看到如下结果: A.发送目标地址为3.3.3.3的数据包时,打上标签1026,然后发送。 B.发送目标地址为4.4.4.4的数据包时,不打标签直接发送。 C.当路由器收到标签为1024的数据包,将把标签…...

有趣儿的组件(HTML/CSS)
分享几个炫酷的组件,起飞~~ 评论区留爪,继续分享哦~ 文章目录 1. 按钮2. 输入3. 工具提示4. 单选按钮5. 加载中 1. 按钮 HTML: <button id"btn">Button</button>CSS: button {padding: 10px 20px;text-tr…...
1、深度学习环境配置相关下载地址整理(cuda、cudnn、torch、miniconda、pycharm、torchvision等)
一、深度学习环境配置相关: 1、cuda:https://developer.nvidia.com/cuda-toolkit-archive 2、cudnn:https://developer.nvidia.com/rdp/cudnn-archive 4、miniconda:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/?C…...

Spring Boot3自定义异常及全局异常捕获
⛰️个人主页: 蒾酒 🔥系列专栏:《spring boot实战》 🌊山高路远,行路漫漫,终有归途。 目录 前置条件 目的 主要步骤 定义自定义异常类 创建全局异常处理器 手动抛出自定义异常 前置条件 已经初始化好一个…...

【python】网络爬虫与信息提取--Beautiful Soup库
Beautiful Soup网站:https://www.crummy.com/software/BeautifulSoup/ 作用:它能够对HTML.xml格式进行解析,并且提取其中的相关信息。它可以对我们提供的任何格式进行相关的爬取,并且可以进行树形解析。 使用原理:它能…...

谷歌浏览器,如何将常用打开的网站创建快捷方式到电脑桌面?
打开谷歌浏览器,打开想要创建的快捷方式的网页 点击浏览器右上角的三个点: 点击选择【更多工具】 选择【创建快捷方式】 然后,在浏览器上方会弹出一个框,让命名此创建的快捷方式的名称 命名好之后,再点击【创…...

产品经理面试题解析:业务架构是通往成功的关键吗?
大家好,我是小米!今天我要和大家聊的是产品经理面试中的一个热门话题:“业务架构”!相信不少小伙伴在准备面试的时候都会遇到这个问题,究竟什么是业务架构?它又与产品经理的工作有着怎样的关系呢࿱…...

【蓝桥杯】灭鼠先锋
一.题目描述 二.解题思路 博弈论: 只能转移到必胜态的,均为必败态。 可以转移到必败态的,均为必胜肽。 最优的策略是,下一步一定是必败态。 #include<iostream> #include<map> using namespace std;map<string,bo…...
2024年华为OD机试真题-求字符串中所有整数的最小和-Python-OD统一考试(C卷)
题目描述: 输入字符串s,输出s中包含所有整数的最小和 说明 1. 字符串s,只包含 a-z A-Z +- ; 2. 合法的整数包括 1) 正整数 一个或者多个0-9组成,如 0 2 3 002 102 2)负整数 负号 - 开头,数字部分由一个或者多个0-9组成,如 -0 -012 -23 -00023 输入描述: 包含…...

数据分析基础之《pandas(7)—高级处理2》
四、合并 如果数据由多张表组成,那么有时候需要将不同的内容合并在一起分析 1、先回忆下numpy中如何合并 水平拼接 np.hstack() 竖直拼接 np.vstack() 两个都能实现 np.concatenate((a, b), axis) 2、pd.concat([data1, data2], axis1) 按照行或者列…...

fluent脱硝SCR相对标准偏差、氨氮比、截面速度计算
# -*- coding: utf-8 -*- """ Created on Wed Sep 20 20:40:30 2023 联系QQ:3123575367,专业SCR脱硝仿真。 该程序用来处理fluent通过export-solution-ASCII-Space导出的数据,可计算标准偏差SD、相对标准偏差RSD,适用于求解平面的相对均匀…...
Codeforces Round 925 (Div. 3)(A~E)
题目暂时是AC,现在是Hack阶段,代码仅供参考。 A. Recovering a Small String 题目给出的n都可以由字母来组成,比如4可以是aab,字母里面排第一个和第二个,即1124。但是会歧义,比如aba为1214,也是…...

@RequestBody、@RequestParam、@RequestPart使用方式和使用场景
RequestBody和RequestParam和RequestPart使用方式和使用场景 1.RequestBody2.RequestParam3.RequestPart 1.RequestBody 使用此注解接收参数时,适用于请求体格式为 application/json,只能用对象接收 2.RequestParam 接收的参数是来自HTTP 请求体 或 请…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...

MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...