λ-矩阵的多项式展开
原文链接
定义. 对于 m × n m \times n m×n 的 λ \lambda λ-矩阵 A ( λ ) = [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)=\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdots \\ a_{m1}(\lambda) & ... & a_{mn}(\lambda) \end{bmatrix} A(λ)= a11(λ)⋮am1(λ)......a1n(λ)⋮amn(λ)
称 L = max 1 ≤ i ≤ m 1 ≤ j ≤ n deg { a i j ( λ ) } L=\max\limits_{1\leq i\leq m\atop{1\leq j \leq n}}\deg \{a_{ij}(\lambda)\} L=1≤j≤n1≤i≤mmaxdeg{aij(λ)} 为 A ( λ ) \mathbf{A}(\lambda) A(λ) 的次数, 显然每个元素的次数不超过 L L L.
定理. 对于 m × n m \times n m×n 的 λ \lambda λ-矩阵 A ( λ ) \mathbf{A}(\lambda) A(λ), 次数为 L L L, 存在唯一的一组常数 m × n m \times n m×n 矩阵 A 0 \mathbf{A}_0 A0, . . . ... ..., A L \mathbf{A}_{L} AL, 使得: A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL (称之为 A ( λ ) \mathbf{A}(\lambda) A(λ) 的多项式展开式).
存在性: 设
A ( λ ) = [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)=\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdots \\ a_{m1}(\lambda) & ... & a_{mn}(\lambda) \end{bmatrix} A(λ)= a11(λ)⋮am1(λ)......a1n(λ)⋮amn(λ)
其中 a i j ( λ ) = a i j 0 + a i j 1 λ + . . . + a i j L λ L , 1 ≤ i ≤ m , 1 ≤ j ≤ n a_{ij}(\lambda)=a_{ij}^{0}+a_{ij}^{1}\lambda + ... + a_{ij}^{L}\lambda^{L}, \ 1 \leq i \leq m, \ 1 \leq j \leq n aij(λ)=aij0+aij1λ+...+aijLλL, 1≤i≤m, 1≤j≤n, 令 A r = [ a 11 r . . . a 1 n r ⋮ ⋮ a m 1 r . . . a m n r ] , 0 ≤ r ≤ L \mathbf{A}_{r}=\begin{bmatrix} a_{11}^{r} & ... & a_{1n}^{r}\\ \vdots & & \vdots \\ a_{m1}^{r} & ... & a_{mn}^{r} \end{bmatrix},\ 0\leq r\leq L Ar= a11r⋮am1r......a1nr⋮amnr , 0≤r≤L
则可以将 A ( λ ) \mathbf{A}(\lambda) A(λ) 表示为 A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL.
唯一性: 若不唯一, 则设存在另外一组 m × n m \times n m×n 矩阵 A 0 ′ \mathbf{A}'_0 A0′, …, A L ′ \mathbf{A}'_{L} AL′, 使得: A ( λ ) = A 0 ′ + A 1 ′ λ + . . . + A L ′ λ L \mathbf{A}(\lambda)=\mathbf{A}'_{0}+\mathbf{A}'_{1}\lambda+...+\mathbf{A}'_{L}\lambda^{L} A(λ)=A0′+A1′λ+...+AL′λL.
A ( λ ) = A 0 + A 1 λ + . . . + A L λ L = A 0 ′ + A 1 ′ λ + . . . + A L ′ λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L}=\mathbf{A}'_{0}+\mathbf{A}'_{1}\lambda+...+\mathbf{A}'_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL=A0′+A1′λ+...+AL′λL
( A 0 − A 0 ′ ) + ( A 1 − A 1 ′ ) λ + . . . + ( A L − A L ′ ) λ L = 0 (\mathbf{A}_{0}-\mathbf{A}'_{0})+(\mathbf{A}_{1}-\mathbf{A}'_{1})\lambda+...+(\mathbf{A}_{L}-\mathbf{A}'_{L})\lambda^L=\mathbf{0} (A0−A0′)+(A1−A1′)λ+...+(AL−AL′)λL=0
比较系数可知 A 0 = A 0 ′ \mathbf{A}_{0}=\mathbf{A}'_{0} A0=A0′,…, A L = A L ′ \mathbf{A}_{L}=\mathbf{A}'_{L} AL=AL′. 矛盾.
存在性的过程也提供了展开式的求法.
定理. A ( λ ) \mathbf{A}(\lambda) A(λ) 和 B ( λ ) \mathbf{B}(\lambda) B(λ) 是 n n n 阶 λ \lambda λ-矩阵, 记 deg A ( λ ) = L \deg \mathbf{A}(\lambda)=L degA(λ)=L, deg B ( λ ) = M \deg \mathbf{B}(\lambda)=M degB(λ)=M, 有: L , M > 0 L, M \gt 0 L,M>0, 且 B ( λ ) \mathbf{B}(\lambda) B(λ) 的多项式展开式中 λ M \lambda^{M} λM 项的系数矩阵可逆, 则存在 n n n 阶 λ \lambda λ-矩阵 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ), deg V ( λ ) < M \deg\mathbf{V}(\lambda)<M degV(λ)<M, 使得 A ( λ ) = U ( λ ) B ( λ ) + V ( λ ) \mathbf{A}(\lambda)=\mathbf{U}(\lambda)\mathbf{B}(\lambda)+\mathbf{V}(\lambda) A(λ)=U(λ)B(λ)+V(λ).
证明: 当 L < M L<M L<M 时, 令 U ( λ ) = 0 \mathbf{U}(\lambda)=\mathbf{0} U(λ)=0, V ( λ ) = A ( λ ) \mathbf{V}(\lambda)=\mathbf{A}(\lambda) V(λ)=A(λ), 显然 U ( λ ) \mathbf{U}(\lambda) U(λ) 和 V ( λ ) \mathbf{V}(\lambda) V(λ) 即为所求. 接下来用数学归纳法证明当 L ≥ M L\geq M L≥M 时结论成立:
当 L = M = 1 L=M=1 L=M=1 时, 设 A ( λ ) = A 0 + A 1 λ \mathbf{A}(\lambda)=\mathbf{A}_0+\mathbf{A}_1 \lambda A(λ)=A0+A1λ, B ( λ ) = B 0 + B 1 λ \mathbf{B}(\lambda)=\mathbf{B}_0+\mathbf{B}_1 \lambda B(λ)=B0+B1λ, 令 U ( λ ) = A 1 B 1 − 1 \mathbf{U}(\lambda)=\mathbf{A}_1\mathbf{B}_{1}^{-1} U(λ)=A1B1−1, V ( λ ) = A 0 − A 1 B 1 − 1 \mathbf{V}(\lambda)=\mathbf{A}_0-\mathbf A_1\mathbf B_{1}^{-1} V(λ)=A0−A1B1−1 即为所求.
若结论对于 L = k L=k L=k 成立, 当 L = k + 1 L=k+1 L=k+1 时: 设 A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL, B ( λ ) = B 0 + B 1 λ + . . . + B M λ M \mathbf{B}(\lambda)=\mathbf{B}_{0}+\mathbf{B}_{1}\lambda+...+\mathbf{B}_{M}\lambda^{M} B(λ)=B0+B1λ+...+BMλM, 令 A ′ ( λ ) = A ( λ ) − A L B M − 1 λ L − M B ( λ ) \mathbf {A}'(\lambda) = \mathbf{A}(\lambda)-\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}\mathbf{B}(\lambda) A′(λ)=A(λ)−ALBM−1λL−MB(λ), 易验证 A ′ ( λ ) \mathbf{A}'(\lambda) A′(λ) 次数小于 L L L, 根据归纳假设, 存在 n n n 阶 λ \lambda λ-矩阵 U ′ ( λ ) \mathbf{U}'(\lambda) U′(λ), V ′ ( λ ) \mathbf{V}'(\lambda) V′(λ), deg V ′ ( λ ) < M \deg\mathbf{V}'(\lambda)<M degV′(λ)<M, 使得 A ′ ( λ ) = U ′ ( λ ) B ( λ ) + V ′ ( λ ) \mathbf{A}'(\lambda)=\mathbf{U}'(\lambda)\mathbf{B}(\lambda)+\mathbf{V}'(\lambda) A′(λ)=U′(λ)B(λ)+V′(λ). 进而有 A ( λ ) = [ A L B M − 1 λ L − M + U ′ ( λ ) ] B ( λ ) + V ′ ( λ ) \mathbf{A}(\lambda)=[\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}+\mathbf{U}'(\lambda)]\mathbf{B}(\lambda)+\mathbf{V}'(\lambda) A(λ)=[ALBM−1λL−M+U′(λ)]B(λ)+V′(λ). 定义 U ( λ ) = A L B M − 1 λ L − M + U ′ ( λ ) \mathbf{U}(\lambda)=\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}+\mathbf{U}'(\lambda) U(λ)=ALBM−1λL−M+U′(λ), V ( λ ) = V ′ ( λ ) \mathbf{V}(\lambda)=\mathbf{V}'(\lambda) V(λ)=V′(λ), 显然 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ) 即为所求.
同理可证明: A ( λ ) \mathbf{A}(\lambda) A(λ) 和 B ( λ ) \mathbf{B}(\lambda) B(λ) 是 n n n 阶 λ \lambda λ-矩阵, 记 deg A ( λ ) = L \deg \mathbf{A}(\lambda)=L degA(λ)=L, deg B ( λ ) = M \deg \mathbf{B}(\lambda)=M degB(λ)=M, 有: L , M > 0 L, M \gt 0 L,M>0, 且 B M \mathbf{B}_{M} BM 可逆, 则存在 n n n 阶 λ \lambda λ-矩阵 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ), deg V ( λ ) < M \deg\mathbf{V}(\lambda)<M degV(λ)<M, 使得 A ( λ ) = A ( λ ) U ( λ ) + V ( λ ) \mathbf{A}(\lambda)=\mathbf{A}(\lambda)\mathbf{U}(\lambda)+\mathbf{V}(\lambda) A(λ)=A(λ)U(λ)+V(λ).
相关文章:
λ-矩阵的多项式展开
原文链接 定义. 对于 m n m \times n mn 的 λ \lambda λ-矩阵 A ( λ ) [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdo…...

如何在PDF 文件中删除页面?
查看不同的工具以及解释如何在 Windows、Android、macOS 和 iOS 上从 PDF 删除页面的步骤: PDF 是最难处理的文件格式之一。曾经有一段时间,除了阅读之外,无法用 PDF 做任何事情。但是今天,有许多应用程序和工具可以让您用它们做…...
蓝桥杯官网填空题(质数拆分)
问题描述 将 2022 拆分成不同的质数的和,请问最多拆分成几个? 答案提交 本题为一道结果填空的题,只需要算出结果后,在代码中使用输出语句将结果输出即可。 运行限制 import java.util.Scanner;public class Main {static int …...

【数据结构】二叉树的顺序结构及链式结构
目录 1.树的概念及结构 1.1树的概念 1.2树的相关概念 编辑 1.3树的表示 1.4树在实际中的运用(表示文件系统的目录树结构) 2.二叉树概念及结构 2.1二叉树的概念 2.2现实中的二叉树 编辑 2.3特殊的二叉树 2.4二叉树的性质 2.5二叉树的存储结…...

海外IP代理:解锁网络边界的实战利器
文章目录 引言:正文:一、Roxlabs全球IP代理服务概览特点:覆盖范围:住宅IP真实性:性价比:在网络数据采集中的重要性: 二、实战应用案例一:跨境电商竞品分析步骤介绍:代码示…...

如何写好一个简历
如何编写求职简历 论Java程序员求职中简历的重要性 好简历的作用 在求职过程中,一份好的简历是非常重要的,它甚至可以直接决定能否被面试官认可。一份出色或者说是成功的个人简历,最根本的作用是能让看这份简历的人产生一定要见你的强烈愿…...

【AutoML】AutoKeras 进行 RNN 循环神经网络训练
由于最近这些天都在人工审查之前的哪些问答数据,所以迟迟都没有更新 AutoKeras 的训练结果。现在那部分数据都已经整理好了,20w 的数据最后能够使用的高质量数据只剩下 2k。这 2k 的数据已经经过数据校验并且对部分问题的提问方式和答案内容进行了不改变…...

H12-821_74
74.在某路由器上查看LSP,看到如下结果: A.发送目标地址为3.3.3.3的数据包时,打上标签1026,然后发送。 B.发送目标地址为4.4.4.4的数据包时,不打标签直接发送。 C.当路由器收到标签为1024的数据包,将把标签…...

有趣儿的组件(HTML/CSS)
分享几个炫酷的组件,起飞~~ 评论区留爪,继续分享哦~ 文章目录 1. 按钮2. 输入3. 工具提示4. 单选按钮5. 加载中 1. 按钮 HTML: <button id"btn">Button</button>CSS: button {padding: 10px 20px;text-tr…...
1、深度学习环境配置相关下载地址整理(cuda、cudnn、torch、miniconda、pycharm、torchvision等)
一、深度学习环境配置相关: 1、cuda:https://developer.nvidia.com/cuda-toolkit-archive 2、cudnn:https://developer.nvidia.com/rdp/cudnn-archive 4、miniconda:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/?C…...

Spring Boot3自定义异常及全局异常捕获
⛰️个人主页: 蒾酒 🔥系列专栏:《spring boot实战》 🌊山高路远,行路漫漫,终有归途。 目录 前置条件 目的 主要步骤 定义自定义异常类 创建全局异常处理器 手动抛出自定义异常 前置条件 已经初始化好一个…...

【python】网络爬虫与信息提取--Beautiful Soup库
Beautiful Soup网站:https://www.crummy.com/software/BeautifulSoup/ 作用:它能够对HTML.xml格式进行解析,并且提取其中的相关信息。它可以对我们提供的任何格式进行相关的爬取,并且可以进行树形解析。 使用原理:它能…...

谷歌浏览器,如何将常用打开的网站创建快捷方式到电脑桌面?
打开谷歌浏览器,打开想要创建的快捷方式的网页 点击浏览器右上角的三个点: 点击选择【更多工具】 选择【创建快捷方式】 然后,在浏览器上方会弹出一个框,让命名此创建的快捷方式的名称 命名好之后,再点击【创…...

产品经理面试题解析:业务架构是通往成功的关键吗?
大家好,我是小米!今天我要和大家聊的是产品经理面试中的一个热门话题:“业务架构”!相信不少小伙伴在准备面试的时候都会遇到这个问题,究竟什么是业务架构?它又与产品经理的工作有着怎样的关系呢࿱…...

【蓝桥杯】灭鼠先锋
一.题目描述 二.解题思路 博弈论: 只能转移到必胜态的,均为必败态。 可以转移到必败态的,均为必胜肽。 最优的策略是,下一步一定是必败态。 #include<iostream> #include<map> using namespace std;map<string,bo…...
2024年华为OD机试真题-求字符串中所有整数的最小和-Python-OD统一考试(C卷)
题目描述: 输入字符串s,输出s中包含所有整数的最小和 说明 1. 字符串s,只包含 a-z A-Z +- ; 2. 合法的整数包括 1) 正整数 一个或者多个0-9组成,如 0 2 3 002 102 2)负整数 负号 - 开头,数字部分由一个或者多个0-9组成,如 -0 -012 -23 -00023 输入描述: 包含…...

数据分析基础之《pandas(7)—高级处理2》
四、合并 如果数据由多张表组成,那么有时候需要将不同的内容合并在一起分析 1、先回忆下numpy中如何合并 水平拼接 np.hstack() 竖直拼接 np.vstack() 两个都能实现 np.concatenate((a, b), axis) 2、pd.concat([data1, data2], axis1) 按照行或者列…...

fluent脱硝SCR相对标准偏差、氨氮比、截面速度计算
# -*- coding: utf-8 -*- """ Created on Wed Sep 20 20:40:30 2023 联系QQ:3123575367,专业SCR脱硝仿真。 该程序用来处理fluent通过export-solution-ASCII-Space导出的数据,可计算标准偏差SD、相对标准偏差RSD,适用于求解平面的相对均匀…...
Codeforces Round 925 (Div. 3)(A~E)
题目暂时是AC,现在是Hack阶段,代码仅供参考。 A. Recovering a Small String 题目给出的n都可以由字母来组成,比如4可以是aab,字母里面排第一个和第二个,即1124。但是会歧义,比如aba为1214,也是…...

@RequestBody、@RequestParam、@RequestPart使用方式和使用场景
RequestBody和RequestParam和RequestPart使用方式和使用场景 1.RequestBody2.RequestParam3.RequestPart 1.RequestBody 使用此注解接收参数时,适用于请求体格式为 application/json,只能用对象接收 2.RequestParam 接收的参数是来自HTTP 请求体 或 请…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...

Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...

算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...