当前位置: 首页 > news >正文

λ-矩阵的多项式展开

原文链接

定义. 对于 m × n m \times n m×n λ \lambda λ-矩阵 A ( λ ) = [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)=\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdots \\ a_{m1}(\lambda) & ... & a_{mn}(\lambda) \end{bmatrix} A(λ)= a11(λ)am1(λ)......a1n(λ)amn(λ)

L = max ⁡ 1 ≤ i ≤ m 1 ≤ j ≤ n deg ⁡ { a i j ( λ ) } L=\max\limits_{1\leq i\leq m\atop{1\leq j \leq n}}\deg \{a_{ij}(\lambda)\} L=1jn1immaxdeg{aij(λ)} A ( λ ) \mathbf{A}(\lambda) A(λ) 的次数, 显然每个元素的次数不超过 L L L.

定理. 对于 m × n m \times n m×n λ \lambda λ-矩阵 A ( λ ) \mathbf{A}(\lambda) A(λ), 次数为 L L L, 存在唯一的一组常数 m × n m \times n m×n 矩阵 A 0 \mathbf{A}_0 A0, . . . ... ..., A L \mathbf{A}_{L} AL, 使得: A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL (称之为 A ( λ ) \mathbf{A}(\lambda) A(λ) 的多项式展开式).

存在性: 设

A ( λ ) = [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)=\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdots \\ a_{m1}(\lambda) & ... & a_{mn}(\lambda) \end{bmatrix} A(λ)= a11(λ)am1(λ)......a1n(λ)amn(λ)

其中 a i j ( λ ) = a i j 0 + a i j 1 λ + . . . + a i j L λ L , 1 ≤ i ≤ m , 1 ≤ j ≤ n a_{ij}(\lambda)=a_{ij}^{0}+a_{ij}^{1}\lambda + ... + a_{ij}^{L}\lambda^{L}, \ 1 \leq i \leq m, \ 1 \leq j \leq n aij(λ)=aij0+aij1λ+...+aijLλL, 1im, 1jn, 令 A r = [ a 11 r . . . a 1 n r ⋮ ⋮ a m 1 r . . . a m n r ] , 0 ≤ r ≤ L \mathbf{A}_{r}=\begin{bmatrix} a_{11}^{r} & ... & a_{1n}^{r}\\ \vdots & & \vdots \\ a_{m1}^{r} & ... & a_{mn}^{r} \end{bmatrix},\ 0\leq r\leq L Ar= a11ram1r......a1nramnr , 0rL

则可以将 A ( λ ) \mathbf{A}(\lambda) A(λ) 表示为 A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL.

唯一性: 若不唯一, 则设存在另外一组 m × n m \times n m×n 矩阵 A 0 ′ \mathbf{A}'_0 A0, …, A L ′ \mathbf{A}'_{L} AL, 使得: A ( λ ) = A 0 ′ + A 1 ′ λ + . . . + A L ′ λ L \mathbf{A}(\lambda)=\mathbf{A}'_{0}+\mathbf{A}'_{1}\lambda+...+\mathbf{A}'_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL.

A ( λ ) = A 0 + A 1 λ + . . . + A L λ L = A 0 ′ + A 1 ′ λ + . . . + A L ′ λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L}=\mathbf{A}'_{0}+\mathbf{A}'_{1}\lambda+...+\mathbf{A}'_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL=A0+A1λ+...+ALλL

( A 0 − A 0 ′ ) + ( A 1 − A 1 ′ ) λ + . . . + ( A L − A L ′ ) λ L = 0 (\mathbf{A}_{0}-\mathbf{A}'_{0})+(\mathbf{A}_{1}-\mathbf{A}'_{1})\lambda+...+(\mathbf{A}_{L}-\mathbf{A}'_{L})\lambda^L=\mathbf{0} (A0A0)+(A1A1)λ+...+(ALAL)λL=0

比较系数可知 A 0 = A 0 ′ \mathbf{A}_{0}=\mathbf{A}'_{0} A0=A0,…, A L = A L ′ \mathbf{A}_{L}=\mathbf{A}'_{L} AL=AL. 矛盾.

存在性的过程也提供了展开式的求法.

定理. A ( λ ) \mathbf{A}(\lambda) A(λ) B ( λ ) \mathbf{B}(\lambda) B(λ) n n n λ \lambda λ-矩阵, 记 deg ⁡ A ( λ ) = L \deg \mathbf{A}(\lambda)=L degA(λ)=L, deg ⁡ B ( λ ) = M \deg \mathbf{B}(\lambda)=M degB(λ)=M, 有: L , M > 0 L, M \gt 0 L,M>0, 且 B ( λ ) \mathbf{B}(\lambda) B(λ) 的多项式展开式中 λ M \lambda^{M} λM 项的系数矩阵可逆, 则存在 n n n λ \lambda λ-矩阵 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ), deg ⁡ V ( λ ) < M \deg\mathbf{V}(\lambda)<M degV(λ)<M, 使得 A ( λ ) = U ( λ ) B ( λ ) + V ( λ ) \mathbf{A}(\lambda)=\mathbf{U}(\lambda)\mathbf{B}(\lambda)+\mathbf{V}(\lambda) A(λ)=U(λ)B(λ)+V(λ).

证明: 当 L < M L<M L<M 时, 令 U ( λ ) = 0 \mathbf{U}(\lambda)=\mathbf{0} U(λ)=0, V ( λ ) = A ( λ ) \mathbf{V}(\lambda)=\mathbf{A}(\lambda) V(λ)=A(λ), 显然 U ( λ ) \mathbf{U}(\lambda) U(λ) V ( λ ) \mathbf{V}(\lambda) V(λ) 即为所求. 接下来用数学归纳法证明当 L ≥ M L\geq M LM 时结论成立:
L = M = 1 L=M=1 L=M=1 时, 设 A ( λ ) = A 0 + A 1 λ \mathbf{A}(\lambda)=\mathbf{A}_0+\mathbf{A}_1 \lambda A(λ)=A0+A1λ, B ( λ ) = B 0 + B 1 λ \mathbf{B}(\lambda)=\mathbf{B}_0+\mathbf{B}_1 \lambda B(λ)=B0+B1λ, 令 U ( λ ) = A 1 B 1 − 1 \mathbf{U}(\lambda)=\mathbf{A}_1\mathbf{B}_{1}^{-1} U(λ)=A1B11, V ( λ ) = A 0 − A 1 B 1 − 1 \mathbf{V}(\lambda)=\mathbf{A}_0-\mathbf A_1\mathbf B_{1}^{-1} V(λ)=A0A1B11 即为所求.
若结论对于 L = k L=k L=k 成立, 当 L = k + 1 L=k+1 L=k+1 时: 设 A ( λ ) = A 0 + A 1 λ + . . . + A L λ L \mathbf{A}(\lambda)=\mathbf{A}_{0}+\mathbf{A}_{1}\lambda+...+\mathbf{A}_{L}\lambda^{L} A(λ)=A0+A1λ+...+ALλL, B ( λ ) = B 0 + B 1 λ + . . . + B M λ M \mathbf{B}(\lambda)=\mathbf{B}_{0}+\mathbf{B}_{1}\lambda+...+\mathbf{B}_{M}\lambda^{M} B(λ)=B0+B1λ+...+BMλM, 令 A ′ ( λ ) = A ( λ ) − A L B M − 1 λ L − M B ( λ ) \mathbf {A}'(\lambda) = \mathbf{A}(\lambda)-\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}\mathbf{B}(\lambda) A(λ)=A(λ)ALBM1λLMB(λ), 易验证 A ′ ( λ ) \mathbf{A}'(\lambda) A(λ) 次数小于 L L L, 根据归纳假设, 存在 n n n λ \lambda λ-矩阵 U ′ ( λ ) \mathbf{U}'(\lambda) U(λ), V ′ ( λ ) \mathbf{V}'(\lambda) V(λ), deg ⁡ V ′ ( λ ) < M \deg\mathbf{V}'(\lambda)<M degV(λ)<M, 使得 A ′ ( λ ) = U ′ ( λ ) B ( λ ) + V ′ ( λ ) \mathbf{A}'(\lambda)=\mathbf{U}'(\lambda)\mathbf{B}(\lambda)+\mathbf{V}'(\lambda) A(λ)=U(λ)B(λ)+V(λ). 进而有 A ( λ ) = [ A L B M − 1 λ L − M + U ′ ( λ ) ] B ( λ ) + V ′ ( λ ) \mathbf{A}(\lambda)=[\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}+\mathbf{U}'(\lambda)]\mathbf{B}(\lambda)+\mathbf{V}'(\lambda) A(λ)=[ALBM1λLM+U(λ)]B(λ)+V(λ). 定义 U ( λ ) = A L B M − 1 λ L − M + U ′ ( λ ) \mathbf{U}(\lambda)=\mathbf{A}_{L}\mathbf{B}^{-1}_{M}\lambda^{L-M}+\mathbf{U}'(\lambda) U(λ)=ALBM1λLM+U(λ), V ( λ ) = V ′ ( λ ) \mathbf{V}(\lambda)=\mathbf{V}'(\lambda) V(λ)=V(λ), 显然 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ) 即为所求.

同理可证明: A ( λ ) \mathbf{A}(\lambda) A(λ) B ( λ ) \mathbf{B}(\lambda) B(λ) n n n λ \lambda λ-矩阵, 记 deg ⁡ A ( λ ) = L \deg \mathbf{A}(\lambda)=L degA(λ)=L, deg ⁡ B ( λ ) = M \deg \mathbf{B}(\lambda)=M degB(λ)=M, 有: L , M > 0 L, M \gt 0 L,M>0, 且 B M \mathbf{B}_{M} BM 可逆, 则存在 n n n λ \lambda λ-矩阵 U ( λ ) \mathbf{U}(\lambda) U(λ), V ( λ ) \mathbf{V}(\lambda) V(λ), deg ⁡ V ( λ ) < M \deg\mathbf{V}(\lambda)<M degV(λ)<M, 使得 A ( λ ) = A ( λ ) U ( λ ) + V ( λ ) \mathbf{A}(\lambda)=\mathbf{A}(\lambda)\mathbf{U}(\lambda)+\mathbf{V}(\lambda) A(λ)=A(λ)U(λ)+V(λ).

相关文章:

λ-矩阵的多项式展开

原文链接 定义. 对于 m n m \times n mn 的 λ \lambda λ-矩阵 A ( λ ) [ a 11 ( λ ) . . . a 1 n ( λ ) ⋮ ⋮ a m 1 ( λ ) . . . a m n ( λ ) ] \mathbf{A}(\lambda)\begin{bmatrix} a_{11}(\lambda) & ... & a_{1n}(\lambda)\\ \vdots & & \vdo…...

如何在PDF 文件中删除页面?

查看不同的工具以及解释如何在 Windows、Android、macOS 和 iOS 上从 PDF 删除页面的步骤&#xff1a; PDF 是最难处理的文件格式之一。曾经有一段时间&#xff0c;除了阅读之外&#xff0c;无法用 PDF 做任何事情。但是今天&#xff0c;有许多应用程序和工具可以让您用它们做…...

蓝桥杯官网填空题(质数拆分)

问题描述 将 2022 拆分成不同的质数的和&#xff0c;请问最多拆分成几个&#xff1f; 答案提交 本题为一道结果填空的题&#xff0c;只需要算出结果后&#xff0c;在代码中使用输出语句将结果输出即可。 运行限制 import java.util.Scanner;public class Main {static int …...

【数据结构】二叉树的顺序结构及链式结构

目录 1.树的概念及结构 1.1树的概念 1.2树的相关概念 ​编辑 1.3树的表示 1.4树在实际中的运用&#xff08;表示文件系统的目录树结构&#xff09; 2.二叉树概念及结构 2.1二叉树的概念 2.2现实中的二叉树 ​编辑 2.3特殊的二叉树 2.4二叉树的性质 2.5二叉树的存储结…...

海外IP代理:解锁网络边界的实战利器

文章目录 引言&#xff1a;正文&#xff1a;一、Roxlabs全球IP代理服务概览特点&#xff1a;覆盖范围&#xff1a;住宅IP真实性&#xff1a;性价比&#xff1a;在网络数据采集中的重要性&#xff1a; 二、实战应用案例一&#xff1a;跨境电商竞品分析步骤介绍&#xff1a;代码示…...

如何写好一个简历

如何编写求职简历 论Java程序员求职中简历的重要性 好简历的作用 在求职过程中&#xff0c;一份好的简历是非常重要的&#xff0c;它甚至可以直接决定能否被面试官认可。一份出色或者说是成功的个人简历&#xff0c;最根本的作用是能让看这份简历的人产生一定要见你的强烈愿…...

【AutoML】AutoKeras 进行 RNN 循环神经网络训练

由于最近这些天都在人工审查之前的哪些问答数据&#xff0c;所以迟迟都没有更新 AutoKeras 的训练结果。现在那部分数据都已经整理好了&#xff0c;20w 的数据最后能够使用的高质量数据只剩下 2k。这 2k 的数据已经经过数据校验并且对部分问题的提问方式和答案内容进行了不改变…...

H12-821_74

74.在某路由器上查看LSP&#xff0c;看到如下结果&#xff1a; A.发送目标地址为3.3.3.3的数据包时&#xff0c;打上标签1026&#xff0c;然后发送。 B.发送目标地址为4.4.4.4的数据包时&#xff0c;不打标签直接发送。 C.当路由器收到标签为1024的数据包&#xff0c;将把标签…...

有趣儿的组件(HTML/CSS)

分享几个炫酷的组件&#xff0c;起飞~~ 评论区留爪&#xff0c;继续分享哦~ 文章目录 1. 按钮2. 输入3. 工具提示4. 单选按钮5. 加载中 1. 按钮 HTML&#xff1a; <button id"btn">Button</button>CSS&#xff1a; button {padding: 10px 20px;text-tr…...

1、深度学习环境配置相关下载地址整理(cuda、cudnn、torch、miniconda、pycharm、torchvision等)

一、深度学习环境配置相关&#xff1a; 1、cuda&#xff1a;https://developer.nvidia.com/cuda-toolkit-archive 2、cudnn&#xff1a;https://developer.nvidia.com/rdp/cudnn-archive 4、miniconda&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/?C…...

Spring Boot3自定义异常及全局异常捕获

⛰️个人主页: 蒾酒 &#x1f525;系列专栏&#xff1a;《spring boot实战》 &#x1f30a;山高路远&#xff0c;行路漫漫&#xff0c;终有归途。 目录 前置条件 目的 主要步骤 定义自定义异常类 创建全局异常处理器 手动抛出自定义异常 前置条件 已经初始化好一个…...

【python】网络爬虫与信息提取--Beautiful Soup库

Beautiful Soup网站&#xff1a;https://www.crummy.com/software/BeautifulSoup/ 作用&#xff1a;它能够对HTML.xml格式进行解析&#xff0c;并且提取其中的相关信息。它可以对我们提供的任何格式进行相关的爬取&#xff0c;并且可以进行树形解析。 使用原理&#xff1a;它能…...

谷歌浏览器,如何将常用打开的网站创建快捷方式到电脑桌面?

打开谷歌浏览器&#xff0c;打开想要创建的快捷方式的网页 点击浏览器右上角的三个点&#xff1a; 点击选择【更多工具】 选择【创建快捷方式】 然后&#xff0c;在浏览器上方会弹出一个框&#xff0c;让命名此创建的快捷方式的名称 命名好之后&#xff0c;再点击【创…...

产品经理面试题解析:业务架构是通往成功的关键吗?

大家好&#xff0c;我是小米&#xff01;今天我要和大家聊的是产品经理面试中的一个热门话题&#xff1a;“业务架构”&#xff01;相信不少小伙伴在准备面试的时候都会遇到这个问题&#xff0c;究竟什么是业务架构&#xff1f;它又与产品经理的工作有着怎样的关系呢&#xff1…...

【蓝桥杯】灭鼠先锋

一.题目描述 二.解题思路 博弈论&#xff1a; 只能转移到必胜态的&#xff0c;均为必败态。 可以转移到必败态的&#xff0c;均为必胜肽。 最优的策略是&#xff0c;下一步一定是必败态。 #include<iostream> #include<map> using namespace std;map<string,bo…...

2024年华为OD机试真题-求字符串中所有整数的最小和-Python-OD统一考试(C卷)

题目描述: 输入字符串s,输出s中包含所有整数的最小和 说明 1. 字符串s,只包含 a-z A-Z +- ; 2. 合法的整数包括 1) 正整数 一个或者多个0-9组成,如 0 2 3 002 102 2)负整数 负号 - 开头,数字部分由一个或者多个0-9组成,如 -0 -012 -23 -00023 输入描述: 包含…...

数据分析基础之《pandas(7)—高级处理2》

四、合并 如果数据由多张表组成&#xff0c;那么有时候需要将不同的内容合并在一起分析 1、先回忆下numpy中如何合并 水平拼接 np.hstack() 竖直拼接 np.vstack() 两个都能实现 np.concatenate((a, b), axis) 2、pd.concat([data1, data2], axis1) 按照行或者列…...

fluent脱硝SCR相对标准偏差、氨氮比、截面速度计算

# -*- coding: utf-8 -*- """ Created on Wed Sep 20 20:40:30 2023 联系QQ:3123575367&#xff0c;专业SCR脱硝仿真。 该程序用来处理fluent通过export-solution-ASCII-Space导出的数据&#xff0c;可计算标准偏差SD、相对标准偏差RSD,适用于求解平面的相对均匀…...

Codeforces Round 925 (Div. 3)(A~E)

题目暂时是AC&#xff0c;现在是Hack阶段&#xff0c;代码仅供参考。 A. Recovering a Small String 题目给出的n都可以由字母来组成&#xff0c;比如4可以是aab&#xff0c;字母里面排第一个和第二个&#xff0c;即1124。但是会歧义&#xff0c;比如aba为1214&#xff0c;也是…...

@RequestBody、@RequestParam、@RequestPart使用方式和使用场景

RequestBody和RequestParam和RequestPart使用方式和使用场景 1.RequestBody2.RequestParam3.RequestPart 1.RequestBody 使用此注解接收参数时&#xff0c;适用于请求体格式为 application/json&#xff0c;只能用对象接收 2.RequestParam 接收的参数是来自HTTP 请求体 或 请…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...