二、ClickHouse简介
ClickHouse简介
- 前言
- 一、行式存储
- 二、DBMS功能
- 三、多样化引擎
- 四、高吞吐写入能力
- 五、数据分区与线程级并行
- 六、场景
- 七、特定版本
前言
ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库(DBMS),使用 C++
语言编写,主要用于在线分析处理查询(OLAP)(对数据删除和更新不友好),能够使用 SQL 查询实时生成分析数据报
告。
官网地址
一、行式存储

| 行式存储 | 列式存储 | |
|---|---|---|
| 写入 | 每一行的所有字段都存在一起,优点:对数据进行插入和修改操作很方便 | 当一条新数据到来,每一列单独存储,缺点:插入和修改操作麻烦 |
| 查询 | 查询时即使只涉及某几列,所有数据也都会被读取;优点:适合随机查询;在整行的读取上,要优于列式存储;缺点:行式存储不适合扫描,这意味着要查询一个范围的数据 | 查询时只有涉及到的列会被读取;缺点:查询完成时,被查询的列要重新进行组装 |
| 寻道范围 | 读取数据的时候硬盘寻址范围很大 | 由于仅对需要的列进行查找,因此硬盘寻道范围小 |
| 索引 | 缺点:要加速查询的话需要建立索引,建立索引需要花费很多时间。 | 优点:任何列都能作为索引(每一列单独存储,查询个别列的时候,可以仅读取需要的那几个列,相当于为每一列都建立了索引) |
| 压缩 | 缺点:不利于压缩 | 把一列数据保存在一起,而一列的数据类型相同 ;优点:利于压缩 |
| 空间 | 按行存储,不利于压缩,压缩比较差,占空间大 | 列式存储的时候可以为每一列创建一个字典,存储的时候就仅存储数字编码即可,降低了存储空间需求 |
| 聚合 | 不利于聚合操作 | 按列存储,利于数据聚合操作 |
| 应用 | MySQL中的iInnoDB和MyISAM存储引擎是行式存储 | MySQL中的infobright存储引擎是列式存储 |
| 适用场景 | OLTP(存储关系型数据,用于使用数据的时候需要经常用到数据之间的依赖关系的场景,即读取的时候需要整行数据或者整行中大部分列的数据,需要经常用到插入、修改操作) | OLAP(分布式数据库和数据仓库,适合于对大量数据进行统计分析,列与列之间关联性不强,仅进行插入和读取操作的场景) |
- 列式存储好处:
- 对于列的聚合,计数,求和等统计操作原因优于行式存储。
- 由于某一列的数据类型都是相同的,针对于数据存储更容易进行数据压缩,每一列选择更优的数据压缩算法,大大提高了数据的压缩比重。
- 由于数据压缩比更好,一方面节省了磁盘空间,另一方面对于 cache 也有了更大的发挥空间。
二、DBMS功能
- 几乎覆盖了标准 SQL 的大部分语法,包括 DDL 和 DML,以及配套的各种函数,用户管理及权限管理,数据的备份与恢复。
三、多样化引擎
- ClickHouse 和 MySQL 类似,把表级的存储引擎插件化,根据表的不同需求可以设定不同的存储引擎。目前包括合并树、日志、接口和其他四大类 20 多种引擎。
四、高吞吐写入能力
- ClickHouse 采用类 LSM Tree的结构,数据写入后定期在后台 Compaction。通过类 LSM tree的结构,ClickHouse 在数据导入时全部是顺序 append 写,写入后数据段不可更改,在后台compaction 时也是多个段 merge sort 后顺序写回磁盘。顺序写的特性,充分利用了磁盘的吞吐能力,即便在 HDD 上也有着优异的写入性能。
- 官方公开 benchmark 测试显示能够达到 50MB-200MB/s 的写入吞吐能力,按照每行100Byte 估算,大约相当于 50W-200W 条/s 的写入速度。
五、数据分区与线程级并行
- 分区的作用:避免全表扫描
- ClickHouse 将数据划分为多个 partition,每个 partition 再进一步划分为多个 index
granularity(索引粒度),然后通过多个 CPU核心分别处理其中的一部分来实现并行数据处理。
在这种设计下,单条 Query 就能利用整机所有 CPU。极致的并行处理能力,极大的降低了查
询延时。- ClickHouse 即使对于大量数据的查询也能够化整为零平行处理。但是有一个弊端
就是对于单条查询使用多 cpu,就不利于同时并发多条查询。所以对于高 qps 的查询业务, ClickHouse 并不是强项。
- ClickHouse 即使对于大量数据的查询也能够化整为零平行处理。但是有一个弊端
六、场景
- 适用场景:
- 1.大宽表:ClickHouse不适合初始表的存储,适合处理过大量数据的宽表存储
- 2.单表查询性能极优
- 不适用场景:
- 1.join的效率不高,需要优化语句达到最佳性能。
- 因为A join B的时候,B表会被加载到内存,再一条条去匹配A表的数据。如果是分布式的,那么效率就更低了。
- 2.高QPS的场景。
- 1.join的效率不高,需要优化语句达到最佳性能。
七、特定版本
- 20.5的版本:final支持多线程
- 20.6.3的版本:支持explain
- 20.8的版本:增加了引擎,支持实时同步MySQL信息
相关文章:
二、ClickHouse简介
ClickHouse简介 前言一、行式存储二、DBMS功能三、多样化引擎四、高吞吐写入能力五、数据分区与线程级并行六、场景七、特定版本 前言 ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库(DBMS),使用 C 语言编写,主要…...
C++ 11新特性之并发
概述 随着计算机硬件的发展,多核处理器已经成为主流,对程序并发执行能力的需求日益增长。C 11标准引入了一套全面且强大的并发编程支持库,为开发者提供了一个安全、高效地利用多核CPU资源进行并行计算的新框架,极大地简化了多线程…...
jvm问题自查思路
本文聊一下最近处理了一些jvm的问题上,将这个排查和学习过程分享一下,看了很多资料,最终都会落地到几个工具的使用,本文主要是从文档学习、工具学习和第三方技术验证来打开认知和实践,希望有用。 一、文档 不仅知道了…...
任意IOS16系统iPad/Iphone开启台前调度
方法来自GitHub: GitHub - khanhduytran0/TrollPad: Troll SpringBoard into thinking its running on iPadOS 注意操作前iPad/iPhone上需要安装巨魔手机助手和Filza,关于这两个软件的安装自行百度方法。 备注一个巨魔手机助手的下载地址 Release TrollStar 1.2…...
LeetCode、452. 用最少数量的箭引爆气球【中等,贪心,区间问题】
文章目录 前言LeetCode、452. 用最少数量的箭引爆气球【中等,贪心,区间问题】题目链接与分类思路贪心,连续区间数量问题 资料获取 前言 博主介绍:✌目前全网粉丝2W,csdn博客专家、Java领域优质创作者,博客…...
洛谷C++简单题小练习day10—umi的函数
day10--umi的函数--2.13 习题概述 题目背景 umi 找到了一个神秘的函数 f。 题目描述 这个函数接受两个字符串 s1,s2。这些字符串只能由小写字母组成并且具有相同的长度。这个函数的输出是另一个长度与 s1,s2 相同的字符串 g。 g 的第 i 个字符等于 s1 的第 i 个字符和 s2…...
【Linux学习】线程互斥与同步
目录 二十.线程互斥 20.1 什么是线程互斥? 20.2 为什么需要线程互斥? 20.3 互斥锁mutex 20.4 互斥量的接口 20.4.1 互斥量初始 20.4.2 互斥量销毁 20.4.3 互斥量加锁 20.4.4 互斥量解锁 20.4.5 互斥量的基本原理 20.4.6 带上互斥锁后的抢票程序 20.5 死锁问题 死锁…...
前端开发:(三)CSS入门
1. 介绍CSS 1.1 什么是CSS CSS(Cascading Style Sheets)是一种用于描述文档样式和布局的样式表语言,用于美化和排版HTML和XML等标记语言的内容。 1.2 CSS的作用和优势 CSS的主要作用是控制网页的样式和布局,包括字体、颜色、间…...
一周学会Django5 Python Web开发-Django5创建项目(用PyCharm工具)
锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计11条视频,包括:2024版 Django5 Python we…...
寒假学习记录13:JS对象
目录 对象转数组 对象双值转数组 Object.entries() (转为二维数组)(属性的值和键) 对象右值转数组 Object.values() (属性的值) 对象左值转数组 Object.keys() (属性的键) 对象左值转…...
学生成绩管理系统|基于Springboot的学生成绩管理系统设计与实现(源码+数据库+文档)
学生成绩管理系统目录 目录 基于Springboot的学生成绩管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员功能模块 2、学生功能模块 3、教师功能模块 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源…...
C#向数组指定索引位置插入新的元素值:自定义插入方法 vs List<T>.Add(T) 方法
目录 一、使用的方法 1.自定义插入方法 2.使用List.Add(T) 方法 二、实例 1.示例1:List.Add(T) 方法 2.示例:自定义插入方法 一、使用的方法 1.自定义插入方法 首先需要定义一个一维数组,然后修改数组的长度(这里使用Length属性获取…...
【大数据Hive】hive 表设计常用优化策略
目录 一、前言 二、hive 普通表查询原理 2.1 操作演示说明 2.1.1 创建一张表,并加载数据 2.1.2 统计3月24号的登录人数 2.1.3 查询原理过程总结 2.2 普通表结构带来的问题 三、hive分区表设计 3.1 区表结构 - 分区设计思想 3.2 操作演示 3.2.1 创建分区表…...
jvm垃圾收集器之七种武器
目录 1.回收算法 1.1 标记-清除算法(Mark-Sweep) 1.2 复制算法(Copying) 1.3 标记-整理算法(Mark-Compact) 2.HotSpot虚拟机的垃圾收集器 2.1 新生代的收集器 Serial 收集器(复制算法) ParNew 收集器 (复制算法) Parallel Scavenge 收集器 (复制…...
STM32面试相关问题
STM32面试相关问题: STM32的内核型号,主频,传感器和单片机总线类型,IIC,SPI,RS485UART数据帧项目中一些参数的设置 STM32 系统移植 ARM编译 常用的驱动编写方式 自己写过哪些方面驱动 其实如果问32的问题,…...
风行智能电视N39S、N40 强制刷机升级方法,附刷机升级数据MstarUpgrade.bin
升级步骤: 1、下载刷机数据,如是压缩包,需要先解压,然后将刷机bin格式的文件重命名为MstarUpgrade.bin 2、将此文件放到U盘根目录 (U盘格式FAT32,单分区,建议4G的优盘刷机成功率高)…...
【C语言】简易英语词典
文章目录 一、定义英语单词信息的结构体二、主函数功能逻辑三、查单词函数四、背单词函数五、补充 一、定义英语单词信息的结构体 添加必要的头文件、宏定义和声明,之后定义英语单词信息结构体。 /* 头文件和宏定义 */ #include <stdio.h> #include <std…...
【算法题】104. 二叉树的最大深度
题目 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3 示例 2: 输入:root [1,nul…...
Docker配置Portainer容器管理界面
目录 一、Portainer 简介 优点: 缺点: 二、环境配置 1. 拉取镜像 2. 创建启动容器 三、操作测试 1. 进入容器 2. 拉取镜像并部署 3. 访问测试 一、Portainer 简介 Portainer 是一个开源的轻量级容器管理界面,用于管理 Docker 容器…...
Linux network namespace 访问外网以及多命名空间通信(经典容器组网 veth pair + bridge 模式认知)
写在前面 整理K8s网络相关笔记博文内容涉及 Linux network namespace 访问外网方案 Demo实际上也就是 经典容器组网 veth pair bridge 模式理解不足小伙伴帮忙指正 不必太纠结于当下,也不必太忧虑未来,当你经历过一些事情的时候,眼前的风景已…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
