二、ClickHouse简介
ClickHouse简介
- 前言
- 一、行式存储
- 二、DBMS功能
- 三、多样化引擎
- 四、高吞吐写入能力
- 五、数据分区与线程级并行
- 六、场景
- 七、特定版本
前言
ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库(DBMS),使用 C++
语言编写,主要用于在线分析处理查询(OLAP)(对数据删除和更新不友好),能够使用 SQL 查询实时生成分析数据报
告。
官网地址
一、行式存储
行式存储 | 列式存储 | |
---|---|---|
写入 | 每一行的所有字段都存在一起,优点:对数据进行插入和修改操作很方便 | 当一条新数据到来,每一列单独存储,缺点:插入和修改操作麻烦 |
查询 | 查询时即使只涉及某几列,所有数据也都会被读取;优点:适合随机查询;在整行的读取上,要优于列式存储;缺点:行式存储不适合扫描,这意味着要查询一个范围的数据 | 查询时只有涉及到的列会被读取;缺点:查询完成时,被查询的列要重新进行组装 |
寻道范围 | 读取数据的时候硬盘寻址范围很大 | 由于仅对需要的列进行查找,因此硬盘寻道范围小 |
索引 | 缺点:要加速查询的话需要建立索引,建立索引需要花费很多时间。 | 优点:任何列都能作为索引(每一列单独存储,查询个别列的时候,可以仅读取需要的那几个列,相当于为每一列都建立了索引) |
压缩 | 缺点:不利于压缩 | 把一列数据保存在一起,而一列的数据类型相同 ;优点:利于压缩 |
空间 | 按行存储,不利于压缩,压缩比较差,占空间大 | 列式存储的时候可以为每一列创建一个字典,存储的时候就仅存储数字编码即可,降低了存储空间需求 |
聚合 | 不利于聚合操作 | 按列存储,利于数据聚合操作 |
应用 | MySQL中的iInnoDB和MyISAM存储引擎是行式存储 | MySQL中的infobright存储引擎是列式存储 |
适用场景 | OLTP(存储关系型数据,用于使用数据的时候需要经常用到数据之间的依赖关系的场景,即读取的时候需要整行数据或者整行中大部分列的数据,需要经常用到插入、修改操作) | OLAP(分布式数据库和数据仓库,适合于对大量数据进行统计分析,列与列之间关联性不强,仅进行插入和读取操作的场景) |
- 列式存储好处:
- 对于列的聚合,计数,求和等统计操作原因优于行式存储。
- 由于某一列的数据类型都是相同的,针对于数据存储更容易进行数据压缩,每一列选择更优的数据压缩算法,大大提高了数据的压缩比重。
- 由于数据压缩比更好,一方面节省了磁盘空间,另一方面对于 cache 也有了更大的发挥空间。
二、DBMS功能
- 几乎覆盖了标准 SQL 的大部分语法,包括 DDL 和 DML,以及配套的各种函数,用户管理及权限管理,数据的备份与恢复。
三、多样化引擎
- ClickHouse 和 MySQL 类似,把表级的存储引擎插件化,根据表的不同需求可以设定不同的存储引擎。目前包括合并树、日志、接口和其他四大类 20 多种引擎。
四、高吞吐写入能力
- ClickHouse 采用类 LSM Tree的结构,数据写入后定期在后台 Compaction。通过类 LSM tree的结构,ClickHouse 在数据导入时全部是顺序 append 写,写入后数据段不可更改,在后台compaction 时也是多个段 merge sort 后顺序写回磁盘。顺序写的特性,充分利用了磁盘的吞吐能力,即便在 HDD 上也有着优异的写入性能。
- 官方公开 benchmark 测试显示能够达到 50MB-200MB/s 的写入吞吐能力,按照每行100Byte 估算,大约相当于 50W-200W 条/s 的写入速度。
五、数据分区与线程级并行
- 分区的作用:避免全表扫描
- ClickHouse 将数据划分为多个 partition,每个 partition 再进一步划分为多个 index
granularity(索引粒度),然后通过多个 CPU核心分别处理其中的一部分来实现并行数据处理。
在这种设计下,单条 Query 就能利用整机所有 CPU
。极致的并行处理能力,极大的降低了查
询延时。- ClickHouse 即使对于大量数据的查询也能够化整为零平行处理。但是有一个弊端
就是对于单条查询使用多 cpu,就不利于同时并发多条查询。所以对于高 qps 的查询业务, ClickHouse 并不是强项
。
- ClickHouse 即使对于大量数据的查询也能够化整为零平行处理。但是有一个弊端
六、场景
- 适用场景:
- 1.大宽表:ClickHouse不适合初始表的存储,适合处理过大量数据的宽表存储
- 2.单表查询性能极优
- 不适用场景:
- 1.join的效率不高,需要优化语句达到最佳性能。
- 因为A join B的时候,B表会被加载到内存,再一条条去匹配A表的数据。如果是分布式的,那么效率就更低了。
- 2.高QPS的场景。
- 1.join的效率不高,需要优化语句达到最佳性能。
七、特定版本
- 20.5的版本:final支持多线程
- 20.6.3的版本:支持explain
- 20.8的版本:增加了引擎,支持实时同步MySQL信息
相关文章:

二、ClickHouse简介
ClickHouse简介 前言一、行式存储二、DBMS功能三、多样化引擎四、高吞吐写入能力五、数据分区与线程级并行六、场景七、特定版本 前言 ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库(DBMS),使用 C 语言编写,主要…...
C++ 11新特性之并发
概述 随着计算机硬件的发展,多核处理器已经成为主流,对程序并发执行能力的需求日益增长。C 11标准引入了一套全面且强大的并发编程支持库,为开发者提供了一个安全、高效地利用多核CPU资源进行并行计算的新框架,极大地简化了多线程…...

jvm问题自查思路
本文聊一下最近处理了一些jvm的问题上,将这个排查和学习过程分享一下,看了很多资料,最终都会落地到几个工具的使用,本文主要是从文档学习、工具学习和第三方技术验证来打开认知和实践,希望有用。 一、文档 不仅知道了…...
任意IOS16系统iPad/Iphone开启台前调度
方法来自GitHub: GitHub - khanhduytran0/TrollPad: Troll SpringBoard into thinking its running on iPadOS 注意操作前iPad/iPhone上需要安装巨魔手机助手和Filza,关于这两个软件的安装自行百度方法。 备注一个巨魔手机助手的下载地址 Release TrollStar 1.2…...

LeetCode、452. 用最少数量的箭引爆气球【中等,贪心,区间问题】
文章目录 前言LeetCode、452. 用最少数量的箭引爆气球【中等,贪心,区间问题】题目链接与分类思路贪心,连续区间数量问题 资料获取 前言 博主介绍:✌目前全网粉丝2W,csdn博客专家、Java领域优质创作者,博客…...
洛谷C++简单题小练习day10—umi的函数
day10--umi的函数--2.13 习题概述 题目背景 umi 找到了一个神秘的函数 f。 题目描述 这个函数接受两个字符串 s1,s2。这些字符串只能由小写字母组成并且具有相同的长度。这个函数的输出是另一个长度与 s1,s2 相同的字符串 g。 g 的第 i 个字符等于 s1 的第 i 个字符和 s2…...

【Linux学习】线程互斥与同步
目录 二十.线程互斥 20.1 什么是线程互斥? 20.2 为什么需要线程互斥? 20.3 互斥锁mutex 20.4 互斥量的接口 20.4.1 互斥量初始 20.4.2 互斥量销毁 20.4.3 互斥量加锁 20.4.4 互斥量解锁 20.4.5 互斥量的基本原理 20.4.6 带上互斥锁后的抢票程序 20.5 死锁问题 死锁…...
前端开发:(三)CSS入门
1. 介绍CSS 1.1 什么是CSS CSS(Cascading Style Sheets)是一种用于描述文档样式和布局的样式表语言,用于美化和排版HTML和XML等标记语言的内容。 1.2 CSS的作用和优势 CSS的主要作用是控制网页的样式和布局,包括字体、颜色、间…...

一周学会Django5 Python Web开发-Django5创建项目(用PyCharm工具)
锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计11条视频,包括:2024版 Django5 Python we…...
寒假学习记录13:JS对象
目录 对象转数组 对象双值转数组 Object.entries() (转为二维数组)(属性的值和键) 对象右值转数组 Object.values() (属性的值) 对象左值转数组 Object.keys() (属性的键) 对象左值转…...

学生成绩管理系统|基于Springboot的学生成绩管理系统设计与实现(源码+数据库+文档)
学生成绩管理系统目录 目录 基于Springboot的学生成绩管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员功能模块 2、学生功能模块 3、教师功能模块 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源…...

C#向数组指定索引位置插入新的元素值:自定义插入方法 vs List<T>.Add(T) 方法
目录 一、使用的方法 1.自定义插入方法 2.使用List.Add(T) 方法 二、实例 1.示例1:List.Add(T) 方法 2.示例:自定义插入方法 一、使用的方法 1.自定义插入方法 首先需要定义一个一维数组,然后修改数组的长度(这里使用Length属性获取…...

【大数据Hive】hive 表设计常用优化策略
目录 一、前言 二、hive 普通表查询原理 2.1 操作演示说明 2.1.1 创建一张表,并加载数据 2.1.2 统计3月24号的登录人数 2.1.3 查询原理过程总结 2.2 普通表结构带来的问题 三、hive分区表设计 3.1 区表结构 - 分区设计思想 3.2 操作演示 3.2.1 创建分区表…...

jvm垃圾收集器之七种武器
目录 1.回收算法 1.1 标记-清除算法(Mark-Sweep) 1.2 复制算法(Copying) 1.3 标记-整理算法(Mark-Compact) 2.HotSpot虚拟机的垃圾收集器 2.1 新生代的收集器 Serial 收集器(复制算法) ParNew 收集器 (复制算法) Parallel Scavenge 收集器 (复制…...
STM32面试相关问题
STM32面试相关问题: STM32的内核型号,主频,传感器和单片机总线类型,IIC,SPI,RS485UART数据帧项目中一些参数的设置 STM32 系统移植 ARM编译 常用的驱动编写方式 自己写过哪些方面驱动 其实如果问32的问题,…...
风行智能电视N39S、N40 强制刷机升级方法,附刷机升级数据MstarUpgrade.bin
升级步骤: 1、下载刷机数据,如是压缩包,需要先解压,然后将刷机bin格式的文件重命名为MstarUpgrade.bin 2、将此文件放到U盘根目录 (U盘格式FAT32,单分区,建议4G的优盘刷机成功率高)…...
【C语言】简易英语词典
文章目录 一、定义英语单词信息的结构体二、主函数功能逻辑三、查单词函数四、背单词函数五、补充 一、定义英语单词信息的结构体 添加必要的头文件、宏定义和声明,之后定义英语单词信息结构体。 /* 头文件和宏定义 */ #include <stdio.h> #include <std…...
【算法题】104. 二叉树的最大深度
题目 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3 示例 2: 输入:root [1,nul…...

Docker配置Portainer容器管理界面
目录 一、Portainer 简介 优点: 缺点: 二、环境配置 1. 拉取镜像 2. 创建启动容器 三、操作测试 1. 进入容器 2. 拉取镜像并部署 3. 访问测试 一、Portainer 简介 Portainer 是一个开源的轻量级容器管理界面,用于管理 Docker 容器…...

Linux network namespace 访问外网以及多命名空间通信(经典容器组网 veth pair + bridge 模式认知)
写在前面 整理K8s网络相关笔记博文内容涉及 Linux network namespace 访问外网方案 Demo实际上也就是 经典容器组网 veth pair bridge 模式理解不足小伙伴帮忙指正 不必太纠结于当下,也不必太忧虑未来,当你经历过一些事情的时候,眼前的风景已…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...