当前位置: 首页 > news >正文

[AIGC] 上传文件:后端处理还是直接阿里云OSS?

在构建Web应用时,我们经常需要处理用户上传的文件。这可能是图片、视频、文档等各种各样的文件。但是,上传文件的方式有很多种,最常见的两种方式是:通过后端处理,或者直接上传至云存储服务,如阿里云OSS。那么,哪种方式更好?本文将为您提供一些思考和建议。


通过后端处理

将文件上传至后端,然后由后端将文件保存到云存储服务中,是一种常见的做法。这种方式的优点是:

  • 安全性高:通过后端处理,我们可以对文件进行过滤和校验,避免上传恶意文件或者非法内容。
  • 易于管理:通过后端处理,我们可以更好地管理文件,例如:给文件添加水印、压缩图片、转换格式等。
  • 简单易用:大部分后端框架都提供了文件上传的支持,开发人员可以很快上手并实现。

但是,这种方式也有一些缺点:

  • 性能开销大:将文件上传至后端,会带来额外的网络开销和处理时间,影响用户体验。
  • 可扩展性差:如果用户量过大,后端可能无法承担文件上传的压力。

直接上传至阿里云OSS

直接将文件上传至云存储服务,例如阿里云OSS,是另一种常见的做法。这种方式的优点是:

  • 提高性能:直接上传至云存储服务,可以减少网络开销和处理时间,提高用户体验。
  • 可扩展性强:云存储服务具有很高的可扩展性,可以承受大量用户上传的压力。

但是,这种方式也有一些缺点:

  • 安全性问题:直接上传至云存储服务,可能会带来安全问题,例如:泄露敏感信息或者上传恶意文件。
  • 管理困难:直接上传至云存储服务,会带来文件管理的困难,例如:给文件添加水印、压缩图片、转换格式等。

建议

对于小型应用或者内部应用,可以选择通过后端处理。这种方式简单易用,且可以满足大部分需求。对于大型应用或者公共应用,可以选择直接上传至云存储服务。这种方式可以提高性能和可扩展性,但是需要注意安全问题和文件管理困难。

总的来说,上传文件的方式取决于应用的需求和场景。在实际开发中,需要根据应用的实际情况进行选择和平衡。

相关文章:

[AIGC] 上传文件:后端处理还是直接阿里云OSS?

在构建Web应用时,我们经常需要处理用户上传的文件。这可能是图片、视频、文档等各种各样的文件。但是,上传文件的方式有很多种,最常见的两种方式是:通过后端处理,或者直接上传至云存储服务,如阿里云OSS。那…...

速盾cdn:香港服务器如何用国内cdn

在国内使用香港服务器的情况下,可以考虑使用速盾CDN来提供加速服务。速盾CDN是一种专业的内容分发网络解决方案,可以通过使用不同节点的服务器来提供高速的内容传输和访问。 首先,使用速盾CDN可以帮助解决香港服务器与国内用户之间的延迟和带…...

深入学习Pandas:数据连接、合并、加入、添加、重构函数的全面指南【第72篇—python:数据连接】

深入学习Pandas:数据连接、合并、加入、添加、重构函数的全面指南 Pandas是Python中最强大且广泛使用的数据处理库之一,提供了丰富的函数和工具,以便更轻松地处理和分析数据。在本文中,我们将深入探讨Pandas中一系列数据连接、合…...

IDEA中mybatis配置文件表名显示红色,提示 Unable to resolve table ‘xxx‘

问题:IDEA中mybatis配置文件表名显示红色,提示 Unable to resolve table ‘xxx’ 解决方法: 使用快捷提示键 Alt Enter,选择 Go to SQL Resolution Scopes(转到SQL的解析范围)...

Python基于大数据的电影预测分析系统

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

【MATLAB】小波神经网络回归预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 小波神经网络回归预测算法是一种利用小波变换和人工神经网络相结合的方法,用于解决回归预测问题。下面将详细介绍该算法的原理与方法: 小波变换: 小波变…...

最新Burp Suite入门讲解

Burp Suite的安装 Burp Suite是一款集成化的渗透测试工具,包含了很多功能,可以帮助我们高效地完成对Web应用程序的渗透测试和安全检测。 Burp Suite由Java语言编写,Java自身的跨平台性使我们能更方便地学习和使用这款软件。不像其他自动化测…...

【C++】模版初阶

目录 泛函编程 函数模版 概念 格式 原理 实例化 模版函数的匹配原则 类模板 定义格式 泛函编程 如何实现一个通用的交换函数呢? void Swap(int& left, int& right) {int temp left;left right;right temp; } void Swap(double& left, dou…...

Stable Diffusion 模型下载:DreamShaper(梦想塑造者)

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十 下载地址 模型介绍 DreamShaper 是一个分格多样的大模型,可以生成写实、原画、2.5D 等…...

GPT-4模型的创造力

超级的创造力是GPT-4等高级语言模型的重要特征之一。它们不仅能够精确地模拟和再现各类文本样式、结构和内容,而且在生成新的文本时,能够通过深度学习算法对海量训练数据中捕捉到的模式进行创新性的重组与拓展: 词汇创新:基于已学…...

没用的计算器

本次的项目仍然属于没用的模块&#xff0c;仅供娱乐&#xff0c;最后附有效果视频&#xff0c;如需要源代码可以私信或评论&#xff0c;本次还是使用vue来实现的&#xff0c;同样也可以修改为JS 一、HTML部分 <div class"con"><div class"calculator&q…...

基于 Python 的大数据的电信反诈骗系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…...

二、ClickHouse简介

ClickHouse简介 前言一、行式存储二、DBMS功能三、多样化引擎四、高吞吐写入能力五、数据分区与线程级并行六、场景七、特定版本 前言 ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库&#xff08;DBMS&#xff09;&#xff0c;使用 C 语言编写&#xff0c;主要…...

C++ 11新特性之并发

概述 随着计算机硬件的发展&#xff0c;多核处理器已经成为主流&#xff0c;对程序并发执行能力的需求日益增长。C 11标准引入了一套全面且强大的并发编程支持库&#xff0c;为开发者提供了一个安全、高效地利用多核CPU资源进行并行计算的新框架&#xff0c;极大地简化了多线程…...

jvm问题自查思路

本文聊一下最近处理了一些jvm的问题上&#xff0c;将这个排查和学习过程分享一下&#xff0c;看了很多资料&#xff0c;最终都会落地到几个工具的使用&#xff0c;本文主要是从文档学习、工具学习和第三方技术验证来打开认知和实践&#xff0c;希望有用。 一、文档 不仅知道了…...

任意IOS16系统iPad/Iphone开启台前调度

方法来自GitHub: GitHub - khanhduytran0/TrollPad: Troll SpringBoard into thinking its running on iPadOS 注意操作前iPad/iPhone上需要安装巨魔手机助手和Filza&#xff0c;关于这两个软件的安装自行百度方法。 备注一个巨魔手机助手的下载地址 Release TrollStar 1.2…...

LeetCode、452. 用最少数量的箭引爆气球【中等,贪心,区间问题】

文章目录 前言LeetCode、452. 用最少数量的箭引爆气球【中等&#xff0c;贪心&#xff0c;区间问题】题目链接与分类思路贪心&#xff0c;连续区间数量问题 资料获取 前言 博主介绍&#xff1a;✌目前全网粉丝2W&#xff0c;csdn博客专家、Java领域优质创作者&#xff0c;博客…...

洛谷C++简单题小练习day10—umi的函数

day10--umi的函数--2.13 习题概述 题目背景 umi 找到了一个神秘的函数 f。 题目描述 这个函数接受两个字符串 s1,s2。这些字符串只能由小写字母组成并且具有相同的长度。这个函数的输出是另一个长度与 s1,s2 相同的字符串 g。 g 的第 i 个字符等于 s1 的第 i 个字符和 s2…...

【Linux学习】线程互斥与同步

目录 二十.线程互斥 20.1 什么是线程互斥&#xff1f; 20.2 为什么需要线程互斥? 20.3 互斥锁mutex 20.4 互斥量的接口 20.4.1 互斥量初始 20.4.2 互斥量销毁 20.4.3 互斥量加锁 20.4.4 互斥量解锁 20.4.5 互斥量的基本原理 20.4.6 带上互斥锁后的抢票程序 20.5 死锁问题 死锁…...

前端开发:(三)CSS入门

1. 介绍CSS 1.1 什么是CSS CSS&#xff08;Cascading Style Sheets&#xff09;是一种用于描述文档样式和布局的样式表语言&#xff0c;用于美化和排版HTML和XML等标记语言的内容。 1.2 CSS的作用和优势 CSS的主要作用是控制网页的样式和布局&#xff0c;包括字体、颜色、间…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...