当前位置: 首页 > news >正文

机器学习--K-近邻算法常见的几种距离算法详解

文章目录

  • 距离度量
    • 1 欧式距离(Euclidean Distance)
    • 2 曼哈顿距离(Manhattan Distance)
    • 3 切比雪夫距离 (Chebyshev Distance)
    • 4 闵可夫斯基距离(Minkowski Distance)
    • 5 标准化欧氏距离 (Standardized EuclideanDistance)
    • 6 余弦距离(Cosine Distance)
    • 7 汉明距离(Hamming Distance)【了解】
    • 8 杰卡德距离(Jaccard Distance)【了解】
    • 9 马氏距离(Mahalanobis Distance)【了解】
    • 10 “连续属性”和“离散属性”的距离计算

距离度量

距离公式的基本性质
在机器学习过程中,对于函数dist(…),若它是一"距离度量"(distance measure),则需要满足一些基本性质
在这里插入图片描述

1 欧式距离(Euclidean Distance)

欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。
在这里插入图片描述

举例:
X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d = 1.4142 2.8284 4.2426 1.4142 2.8284 1.4142

2 曼哈顿距离(Manhattan Distance)

在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。
这个实际驾驶距离就是“曼哈顿距离”。曼哈顿距离也称为“城市街区距离”(City Block distance)。
在这里插入图片描述
在这里插入图片描述

举例:
X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d = 2 4 6 2 4 2

3 切比雪夫距离 (Chebyshev Distance)

国际象棋中,国王可以直行、横行、斜行,所以国王走一步可以移动到相邻8个方格中的任意一个。
国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?这个距离就叫切比雪夫距离。
在这里插入图片描述
在这里插入图片描述

举例:

X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d = 1 2 3 1 2 1

4 闵可夫斯基距离(Minkowski Distance)

闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:
在这里插入图片描述

其中p是一个变参数:

当p=1时,就是曼哈顿距离;

当p=2时,就是欧氏距离;

当p→∞时,就是切比雪夫距离。

根据p的不同,闵氏距离可以表示某一类/种的距离。

小结:

1 闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点:

e.g. 二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。

a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。

2 闵氏距离的缺点:

​ (1)将各个分量的量纲(scale),也就是“单位”相同的看待了;

​ (2)未考虑各个分量的分布(期望,方差等)可能是不同的。

5 标准化欧氏距离 (Standardized EuclideanDistance)

标准化欧氏距离是针对欧氏距离的缺点而作的一种改进。思路:既然数据各维分量的分布不一样,那先将各个分量都“标准化”到均值、方差相等。​ $S_k$表示各个维度的标准差

在这里插入图片描述

如果将方差的倒数看成一个权重,也可称之为加权欧氏距离(Weighted Euclidean distance)。

举例:
X=[[1,1],[2,2],[3,3],[4,4]];(假设两个分量的标准差分别为0.5和1)
经计算得:
d = 2.2361 4.4721 6.7082 2.2361 4.4721 2.2361

6 余弦距离(Cosine Distance)

几何中,夹角余弦可用来衡量两个向量方向的差异;机器学习中,借用这一概念来衡量样本向量之间的差异。

二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:
在这里插入图片描述

两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦为:
在这里插入图片描述

即:
在这里插入图片描述

夹角余弦取值范围为[-1,1]。余弦越大表示两个向量的夹角越小,余弦越小表示两向量的夹角越大。当两个向量的方向重合时余弦取最大值1,当两个向量的方向完全相反余弦取最小值-1。

举例:

X=[[1,1],[1,2],[2,5],[1,-4]]
经计算得:
d = 0.9487 0.9191 -0.5145 0.9965 -0.7593 -0.8107

7 汉明距离(Hamming Distance)【了解】

两个等长字符串s1与s2的汉明距离为:将其中一个变为另外一个所需要作的最小字符替换次数。用在NLP中比较多

例如:
The Hamming distance between “1011101” and “1001001” is 2.
The Hamming distance between “2143896” and “2233796” is 3.
The Hamming distance between “toned” and “roses” is 3.
在这里插入图片描述

汉明重量:是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是 1 的个数,所以 11101 的汉明重量是 4。因此,如果向量空间中的元素a和b之间的汉明距离等于它们汉明重量的差a-b。

应用:汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。比如在信息编码过程中,为了增强容错性,应使得编码间的最小汉明距离尽可能大。但是,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离等算法。

举例:

X=[[0,1,1],[1,1,2],[1,5,2]]
注:以下计算方式中,把2个向量之间的汉明距离定义为2个向量不同的分量所占的百分比。

经计算得:
d = 0.6667 1.0000 0.3333

8 杰卡德距离(Jaccard Distance)【了解】

杰卡德相似系数(Jaccard similarity coefficient):两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示:
在推荐系统里面用的比较多
在这里插入图片描述

杰卡德距离(Jaccard Distance):与杰卡德相似系数相反,用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度:
在这里插入图片描述

举例:

X=[[1,1,0][1,-1,0],[-1,1,0]]
注:以下计算中,把杰卡德距离定义为不同的维度的个数占“非全零维度”的比例
经计算得:
d = 0.5000 0.5000 1.0000

9 马氏距离(Mahalanobis Distance)【了解】

下图有两个正态分布图,它们的均值分别为a和b,但方差不一样,则图中的A点离哪个总体更近?或者说A有更大的概率属于谁?显然,A离左边的更近,A属于左边总体的概率更大,尽管A与a的欧式距离远一些。这就是马氏距离的直观解释。
在这里插入图片描述

马氏距离是基于样本分布的一种距离。

马氏距离是由印度统计学家马哈拉诺比斯提出的,表示数据的协方差距离。它是一种有效的计算两个位置样本集的相似度的方法。

与欧式距离不同的是,它考虑到各种特性之间的联系,即独立于测量尺度。

马氏距离定义:设总体G为m维总体(考察m个指标),均值向量为μ=(μ1,μ2,… …,μm,)`,协方差阵为∑=(σij),

则样本X=(X1,X2,… …,Xm,)`与总体G的马氏距离定义为:
在这里插入图片描述

马氏距离也可以定义为两个服从同一分布并且其协方差矩阵为∑的随机变量的差异程度:如果协方差矩阵为单位矩阵,马氏距离就简化为欧式距离;如果协方差矩阵为对角矩阵,则其也可称为正规化的欧式距离。

马氏距离特性:

1.量纲无关,排除变量之间的相关性的干扰;

2.马氏距离的计算是建立在总体样本的基础上的,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;

3 .计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离计算即可。

4.还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6),(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线。这种情况下,也采用欧式距离计算。

欧式距离&马氏距离:
在这里插入图片描述

举例:

已知有两个类G1和G2,比如G1是设备A生产的产品,G2是设备B生产的同类产品。设备A的产品质量高(如考察指标为耐磨度X),其平均耐磨度μ1=80,反映设备精度的方差σ2(1)=0.25;设备B的产品质量稍差,其平均耐磨损度μ2=75,反映设备精度的方差σ2(2)=4.

今有一产品G0,测的耐磨损度X0=78,试判断该产品是哪一台设备生产的?

直观地看,X0与μ1(设备A)的绝对距离近些,按距离最近的原则,是否应把该产品判断设备A生产的?

考虑一种相对于分散性的距离,记X0与G1,G2的相对距离为d1,d2,则:
在这里插入图片描述

因为d2=1.5 < d1=4,按这种距离准则,应判断X0为设备B生产的。

设备B生产的产品质量较分散,出现X0为78的可能性较大;而设备A生产的产品质量较集中,出现X0为78的可能性较小。

这种相对于分散性的距离判断就是马氏距离。
在这里插入图片描述

10 “连续属性”和“离散属性”的距离计算

我们常将属性划分为“连续属性(continuous attribute)和"离散属性(categorical attribute),前者在定义域上有无穷多个可能的取值,后者在定义域上是有限个取值
若属性值之间存在序关系,则可以将其转化为连续值,例如: 身高属性“高”“中等”“矮”,可转化为(1,0.5,0}。
闵可夫斯基距离可以用于有序属性。
若属性值之间不存在序关系,则通常将其转化为向量的形式,例如:性别属性“男”“女””,可转化为{ (1,0) ,(0,1) }。

相关文章:

机器学习--K-近邻算法常见的几种距离算法详解

文章目录 距离度量1 欧式距离(Euclidean Distance)2 曼哈顿距离(Manhattan Distance)3 切比雪夫距离 (Chebyshev Distance)4 闵可夫斯基距离(Minkowski Distance)5 标准化欧氏距离 (Standardized EuclideanDistance)6 余弦距离(Cosine Distance)7 汉明距离(Hamming Distance)【…...

<网络安全>《30 网络信息安全基础(1)常用术语整理》

1 肉鸡 所谓“肉鸡”是一种很形象的比喻&#xff0c;比喻那些可以随意被我们控制的电脑&#xff0c;对方可以是WINDOWS系统&#xff0c;也可以是UNIX/LINUX系统&#xff0c;可以是普通的个人电脑&#xff0c;也可以是大型的服务器&#xff0c;我们可以象操作自己的电脑那样来操…...

Git远程仓库的使用(Gitee)及相关指令

目录 1 远程仓库的创建和配置 1.1 创建远程仓库 1.2 设置SSH公钥 2 指令 2.1 git remote add 远端名称(一般为origin) 仓库路径 2.2 git remote 2.3 git push [-f] [--set-upstream] [远端名称 [本地分支名][:远端分支名]] 2.3 git clone url 2.4 git fetch 2.5 git p…...

vscode +markdown 的安装和使用

文章目录 前言一、vscode markdown 是什么&#xff1f;1.vscode是什么&#xff1f;2.markdown 是什么&#xff1f; 二、安装步骤1.下载2.安装 三、安装插件1.安装 Markdown All in One2.安装 Markdown Preview Enhanced3. Paste Image v1.0.44.LimfxCodeExv0.7.105.Code Spell …...

Python爬虫之自动化测试Selenium#7

爬虫专栏&#xff1a;http://t.csdnimg.cn/WfCSx 前言 在前一章中&#xff0c;我们了解了 Ajax 的分析和抓取方式&#xff0c;这其实也是 JavaScript 动态渲染的页面的一种情形&#xff0c;通过直接分析 Ajax&#xff0c;我们仍然可以借助 requests 或 urllib 来实现数据爬取…...

快速学习Spring

Spring 简介 Spring 是一个开源的轻量级、非侵入式的 JavaEE 框架&#xff0c;它为企业级 Java 应用提供了全面的基础设施支持。Spring 的设计目标是简化企业应用的开发&#xff0c;并解决 Java 开发中常见的复杂性和低效率问题。 Spring常用依赖 <dependencies><!-…...

c语言操作符(上)

目录 ​编辑 原码、反码、补码 1、正数 2、负数 3、二进制计算1-1 移位操作符 1、<<左移操作符 2、>>右移操作符 位操作符&、|、^、~ 1、&按位与 2、|按位或 3、^按位异或 特点 4、~按位取反 原码、反码、补码 1、正数 原码 反码 补码相同…...

vue3 可视化大屏自适应屏幕组件

首先定义了一个名叫ScreenContainerOptions的组件&#xff0c;需要传的参数如下 export type ScreenContainerOptions {width?: string | numberheight?: string | numberscreenFit?: boolean // 是否开启屏幕自适应&#xff0c;不然会按比例显示 } 组件的主要代码如下 …...

SpringCloud入门概述

1. 介绍 Spring Cloud 1.1 什么是 Spring Cloud Spring Cloud 是一个基于 Spring Boot 的微服务架构开发工具集&#xff0c;它为开发者提供了一系列开箱即用的工具和库&#xff0c;用于构建分布式系统中的微服务架构。Spring Cloud 提供了诸如服务发现、配置中心、负载均衡、…...

刷题计划_冲绿名

现在 rating 是 1104 准备刷 100道 1200的题&#xff0c;把实力提升到 1200 &#xff0c;上一个绿名 每一个分数段的题都写一百道&#xff0c;争取早日上蓝 现在 虽然 cf 里面显示写了一些这个分数段的题&#xff0c;但是自己训练的时候&#xff0c;其实是没有训练一道这个分…...

【微信小程序开发】小程序版的防抖节流应该怎么写

由于微信小程序与普通网页的开发、编译、运行机制都有所不同&#xff0c;在防抖节流的方法使用上也就需要我们做一些比较棘手的适配操作。常见的H5开发的防抖节流此处就不再分享了&#xff0c;网上有太多的教程&#xff0c;或者直接问那群AI即可。 OK&#xff0c;言归正传&…...

单片机学习笔记---蜂鸣器播放提示音音乐(天空之城)

目录 蜂鸣器播放提示音 蜂鸣器播放音乐&#xff08;天空之城&#xff09; 准备工作 主程序 中断函数 上一节讲了蜂鸣器驱动原理和乐理基础知识&#xff0c;这一节开始代码演示&#xff01; 蜂鸣器播放提示音 先创建工程&#xff1a;蜂鸣器播放提示音 把我们之前模块化的…...

软件实例分享,茶楼收银软件管理系统,支持计时计费商品销售会员管理定时语音提醒功能

软件实例分享&#xff0c;茶楼收银软件管理系统&#xff0c;支持计时计费商品销售会员管理定时语音提醒功能 一、前言 以下软件教程以 佳易王茶社计时计费管理系统软件V18.0为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 问&#xff1a;这个软…...

clang前端

Clang可以处理C、C和Objective-C源代码 Clang简介 Clang可能指三种不同的实体&#xff1a; 前端&#xff08;在Clang库中实现&#xff09;编译驱动程序&#xff08;在clang命令和Clang驱动程序库中实现&#xff09;实际的编译器&#xff08;在clang-ccl命令中实现&#xff0…...

ARM:AI 的翅膀,还能飞多久?

ARM&#xff08;ARM.O&#xff09;于北京时间 2024 年 2 月 8 日上午的美股盘后发布了 2024 年第三财年报告&#xff08;截止 2023 年 12 月&#xff09;&#xff0c;要点如下&#xff1a; 1、整体业绩&#xff1a;收入再创新高。ARM 在 2024 财年第三季度&#xff08;即 23Q4…...

【C语言】常见字符串函数的功能与模拟实现

目录 1.strlen() 模拟实现strlen() 2.strcpy() 模拟实现strcpy() 3.strcat() 模拟实现strcat() 4.strcmp() 模拟实现strcmp() 5.strncpy() 模拟实现strncpy() 6.strncat() 模拟实现strncat() 7.strncmp() 模拟实现strncmp() 8.strstr() 模拟实现strstr() 9.str…...

pyGMT初步使用

文章目录 安装显示地图保存地图 安装 GMT&#xff0c;即Generic Mapping Tools&#xff0c;通用制图工具&#xff0c;是GIS领域应用最广泛的制图软件之一&#xff0c;用于绘制地图、图形以及进行地球科学数据分析和可视化。而pyGMT即其为python提供的函数接口&#xff0c;故而…...

神经网络 | CNN 与 RNN——深度学习主力军

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本文主要将卷积神经网络&#xff08;CNN&#xff09;和循环神经网络&#xff08;RNN&#xff09;这两个深度学习主力军进行对比。我们知道&#xff0c;从应用方面上来看&#xff0c;CNN 用于图像识别较多&#xff0c;而 RNN 用于…...

thinkphp6入门(20)-- 如何上传图片、文件

1. 配置文件 设置上传的路径 对应文件夹 2. 前端 <div class"card-body"><h1 class"card-title">用户头像</h1><img src"../../../uploads/{$user.avatar_photo_path}" alt"avatar" height"100"/&g…...

【Linux技术宝典】深入理解Linux基本指令:命令行新手指南

&#x1f4f7; 江池俊&#xff1a; 个人主页 &#x1f525;个人专栏&#xff1a; ✅数据结构冒险记 ✅Linux技术宝典 &#x1f305; 有航道的人&#xff0c;再渺小也不会迷途。 文章目录 一、Linux下基本指令1. ls 指令2. pwd指令3. clear指令4. cd指令什么是家目录&#xf…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...