当前位置: 首页 > news >正文

利用Python和pandas库进行股票技术分析:移动平均线和MACD指标

利用Python和pandas库进行股票技术分析:移动平均线和MACD指标

    • 介绍
      • 准备工作
      • 数据准备
      • 计算移动平均线
      • 计算MACD指标
      • 结果展示
      • 完整代码
      • 演示


介绍

在股票市场中,技术分析是一种常用的方法,它通过对股票价格和交易量等历史数据的分析,来预测未来价格走势。移动平均线和MACD(Moving Average Convergence Divergence)指标是技术分析中常用的工具之一,它们能够帮助投资者识别趋势和短期交叉信号。

本文将分享如何使用Python编程语言以及pandas库来计算股票的移动平均线和MACD指标,并通过一个简单的示例来演示其应用。

准备工作

首先,需要导入pandas库,它是Python中用于数据分析的重要库之一。接下来将使用pandas来处理和分析股票价格数据。

import pandas as pd

pandas 的主要特点和功能:

特点和功能描述
数据结构提供了 Series 和 DataFrame 两种数据结构,方便处理一维和二维数据。
数据读取和写入支持从多种文件格式(如CSV、Excel、SQL、JSON、HTML等)中读取数据,并可以将数据写入到这些格式中。
数据清洗和转换提供了丰富的数据清洗和转换函数,如处理缺失值、重复值、数据类型转换、索引操作、数据合并、数据重塑等。
数据分析和统计提供了各种统计函数和方法,用于描述性统计、数据聚合、分组计算、时间序列分析、滑动窗口计算等。
数据可视化结合了 Matplotlib 等可视化库,方便绘制各种类型的图表,如折线图、散点图、柱状图等,用于数据可视化和分析展示。
高性能计算基于 NumPy 实现,内部使用了高效的数据结构和算法,能够快速处理大规模数据,提高计算效率。
灵活性和扩展性提供了丰富的功能和灵活的接口,可以根据需求进行定制和扩展,支持与其他库和工具的集成。

数据准备

假设已经有了包含股票收盘价数据的DataFrame,现在将其命名为data,并包含一列名为'Close'的数据。以下是一个示例数据集:

data = pd.DataFrame({'Close': [37.09, 34.61, 33.4, 36.74, 36.69, 36.99, 36.72, 36.82, 38.17, 37.65, 38.75, 38.02, 36.73, 36.98, 36.97,38.45, 37.54, 37.52, 38.02, 37.04, 33.39, 35.5, 35.1, 33.46, 34.33, 34.19, 31.54, 31.03, 33.15, 33.3,34.36, 33.9, 32.9, 34.01, 37.41, 37.53, 38.1, 35.9, 36.12, 36.52, 36.08, 35.4, 35.74, 35.81, 35.37,33.14, 33.22, 32.6, 32.45, 31.68, 33.76, 33.41, 33.63, 33.29, 34.2, 32.35, 32.03, 32.19, 32.36, 33.3,32.37, 31.92, 32.18, 31.8, 29.75, 27.98, 28.23, 26.78, 27.06, 26.52, 27.52, 27.82, 27.8, 26.87, 25.84,25.36, 24.69, 23.79, 24.36, 23.91, 24.72, 23.62, 23.63, 22.9, 21.86, 23.15, 22.7, 21.68, 22.24, 21.81,23.99, 22.62, 20.84, 20.16, 18.89, 19.07, 18.26, 16.44, 16.76,17.06]
})

计算移动平均线

可以使用pandas的rolling()mean()函数来计算移动平均线。假设需要计算12天和26天的移动平均线,可以这样做:

data['Short_MA'] = data['Close'].rolling(window=12).mean()
data['Long_MA'] = data['Close'].rolling(window=26).mean()

计算MACD指标

接下来,可以计算MACD指标。首先,需要计算DIF线,它是短期移动平均线减去长期移动平均线。然后,计算DEA线,它是对DIF线进行移动平均。最后,MACD线是DIF线与DEA线的差。可以按照以下步骤来计算:

data['DIF'] = data['Short_MA'] - data['Long_MA']
data['DEA'] = data['DIF'].rolling(window=9).mean()
data['MACD'] = data['DIF'] - data['DEA']

结果展示

最后,将结果打印输出,以便进行进一步分析或可视化。

print(data[['Close', 'Short_MA', 'Long_MA', 'DIF', 'DEA', 'MACD']])

完整代码

import pandas as pd# 假设data是包含收盘价的DataFrame,且有一列'Close'
data = pd.DataFrame({'Close': [37.09, 34.61, 33.4, 36.74, 36.69, 36.99, 36.72, 36.82, 38.17, 37.65, 38.75, 38.02, 36.73, 36.98, 36.97,38.45, 37.54, 37.52, 38.02, 37.04, 33.39, 35.5, 35.1, 33.46, 34.33, 34.19, 31.54, 31.03, 33.15, 33.3,34.36, 33.9, 32.9, 34.01, 37.41, 37.53, 38.1, 35.9, 36.12, 36.52, 36.08, 35.4, 35.74, 35.81, 35.37,33.14, 33.22, 32.6, 32.45, 31.68, 33.76, 33.41, 33.63, 33.29, 34.2, 32.35, 32.03, 32.19, 32.36, 33.3,32.37, 31.92, 32.18, 31.8, 29.75, 27.98, 28.23, 26.78, 27.06, 26.52, 27.52, 27.82, 27.8, 26.87, 25.84,25.36, 24.69, 23.79, 24.36, 23.91, 24.72, 23.62, 23.63, 22.9, 21.86, 23.15, 22.7, 21.68, 22.24, 21.81,23.99, 22.62, 20.84, 20.16, 18.89, 19.07, 18.26, 16.44, 16.76,17.06]
})# 计算短期(12天)和长期(26天)的移动平均线
data['Short_MA'] = data['Close'].rolling(window=12).mean()
data['Long_MA'] = data['Close'].rolling(window=26).mean()
# 计算DIF线:短期移动平均线减去长期移动平均线
data['DIF'] = data['Short_MA'] - data['Long_MA']
# 计算DEA线:对DIF线进行移动平均
data['DEA'] = data['DIF'].rolling(window=9).mean()
# 计算MACD线:DIF线与DEA线的差
data['MACD'] = data['DIF'] - data['DEA']
# 显示结果
print(data[['Close', 'Short_MA', 'Long_MA', 'DIF', 'DEA', 'MACD']])

演示

在这里插入图片描述

相关文章:

利用Python和pandas库进行股票技术分析:移动平均线和MACD指标

利用Python和pandas库进行股票技术分析:移动平均线和MACD指标 介绍准备工作数据准备计算移动平均线计算MACD指标结果展示完整代码演示 介绍 在股票市场中,技术分析是一种常用的方法,它通过对股票价格和交易量等历史数据的分析,来…...

whisperspeech 英文TTS的实现

以下代码成功运行在 colab 中,需要修改运行时类型为 T4 GPU。 !pip install -Uqq WhisperSpeech def is_colab():try: import google.colab; return Trueexcept: return Falseimport torch # if not torch.cuda.is_available(): # if is_colab(): raise BaseEx…...

P1000 超级玛丽游戏(洛谷)

题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用。 建议完成本题目后继续尝试 P1001、P1008。 另外强烈推荐新用户必读贴 题目描述 超级玛丽是一个非常经典的游戏。请你用字符画的形式输出超级玛丽中的一个场景。 ********************####....#.#..###…...

数据卷的常见命令,如何创建Nginx容器,修改nginx容器内的html目录下的index.html文件

数据卷 什么是数据卷 数据卷(volume)是一个虚拟目录,是容器内目录与宿主机**目录**之间映射的桥梁。 以Nginx为例,我们知道Nginx中有两个关键的目录: html:放置一些静态资源 conf:放置配置文…...

CFS三层靶机

参考博客: CFS三层内网靶场渗透记录【详细指南】 - FreeBuf网络安全行业门户 CFS三层靶机搭建及其内网渗透【附靶场环境】 | TeamsSix CFS三层网络环境靶场实战 - PANDA墨森 - 博客园 (cnblogs.com) CFS三层靶机实战--内网横向渗透 - 知乎 (zhihu.com) CFS靶机…...

C语言——oj刷题——获取月份天数

题目: 描述 KiKi想获得某年某月有多少天,请帮他编程实现。输入年份和月份,计算这一年这个月有多少天。 输入描述: 多组输入,一行有两个整数,分别表示年份和月份,用空格分隔。 输出描述&…...

Java面试题2024(Java面试八股文)

文章目录 基础Springspring Mybatis数据库Mysql redis并发编程网络通信消息队列MQ分布式分布式事务 设计模式 更新中 基础 Java基础 Java对象的创建 集合 HashMap详解 HashMap实现原理 ConcurrentHashMap原理详解 反射 JAVA反射详解 异常 Java 的异常体系 泛型 Java泛型详解 …...

Uniapp(uni-app)学习与快速上手教程

Uniapp(uni-app)学习与快速上手教程 1. 简介 Uniapp是一个跨平台的前端框架,允许您使用Vue.js语法开发小程序、H5、安卓和iOS应用。下面是快速上手的步骤。 2. 创建项目 2.1 可视化界面创建 1、打开 HBuilderX,这是一款专为uni…...

如何开始深度学习,从实践开始

将“如何开始深度学习”这个问题喂给ChatGPT和文心一言,会给出很有专业水准的答案,比如: 要开始深度学习,你可以遵循以下步骤: 学习Python编程语言的基础知识,因为它在深度学习框架中经常被使用。 熟悉线性…...

PostgreSQL的学习心得和知识总结(一百二十九)|深入理解PostgreSQL数据库GUC参数 update_process_title 的使用和原理

目录结构 注:提前言明 本文借鉴了以下博主、书籍或网站的内容,其列表如下: 1、参考书籍:《PostgreSQL数据库内核分析》 2、参考书籍:《数据库事务处理的艺术:事务管理与并发控制》 3、PostgreSQL数据库仓库链接,点击前往 4、日本著名PostgreSQL数据库专家 铃木启修 网站…...

【并发编程】ThreadPoolExecutor类

📝个人主页:五敷有你 🔥系列专栏:并发编程⛺️稳重求进,晒太阳 ThreadPoolExecutor 1) 线程池状态 ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量 状态名 高三位 …...

auto关键字详讲

目录 1.问题思考 2.auto关键字介绍 3. 早期auto的缺陷: 4.什么叫自动存储器? 5. c标准auto关键字 5.1auto的使用细节 5.2 auto什么时候不能推导变量的类型呢? 5.3基于范围的for循环 5.3.1范围for的用法 5.3.2 范围for的使用条件 6.…...

8 scala的伴生对象

1 单例对象 在编写 Java 程序时,我们经常会通过编写静态方法代码,去封装常用的 Utility 类。 在 Scala 中没有静态成员这一概念,所以,如果我们要定义静态属性或方法,就需要使用 Scala 的单例对象 object。Scala 的对…...

Redis相关介绍

概念 Redis:非关系型数据库(non-relational),Mysql是关系型数据库(RDBMS) Redis是当今非常流行的基于KV结构的作为Cache使用的NoSQL数据库 为什么使用NoSQL 关系型 数据库无法应对每秒上万次 的读写请求 表中的存储记录 数量有限 无法简单…...

Transformer实战-系列教程13:DETR 算法解读

🚩🚩🚩Transformer实战-系列教程总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 点我下载源码 1、物体检测 说到目标检测你能想到什么 faster-rcnn系列,开山之作&…...

代码随想录刷题笔记 DAY 25 | 组合问题 No.77 | 组合求和III No.216 | 电话号码的字母组合 No.17

文章目录 Day 2501. 组合问题(No. 77)2.1 题目2.2 笔记2.3 代码 02. 组合求和III(No. 216)2.1 题目2.2 笔记2.3 代码 03. 电话号码的字母组合(No. 17)3.1 题目3.2 笔记3.3 代码3.4 补充 Day 25 01. 组合问…...

upload-labs文件上传漏洞靶场

第一关 <?php eval ($_POST[123]);?>发现他这个是通过客户端前端写了一个限制 我们禁用srcipt即可 蚁剑成功打开 第二关 我们上传文件2.php它提示我们文件类型不正确 我们可以联想到做了后缀检测 我们通过burp抓包修改后缀 第三关 我们上传一个.php文件不可上…...

企业计算机服务器中了mkp勒索病毒怎么办?Mkp勒索病毒解密处理

随着网络技术的不断发展&#xff0c;企业的生产运营也加大了步伐&#xff0c;网络为企业的生产运营提供了强有力保障&#xff0c;但网络是一把双刃剑&#xff0c;给企业带来便利的同时也为企业带来了严重的数据威胁。春节期间&#xff0c;云天数据恢复中心接到很多企业的值班人…...

STM32-寄存器和HAL库以及如何使用

在电子工程领域&#xff0c;“寄存库”和“HAL库”都是与微控制器&#xff08;MCU&#xff09;编程紧密相关的概念。 寄存器&#xff08;Register&#xff09; 含义&#xff1a; 在电子工程领域&#xff0c;特别是计算机体系结构和微控制器设计中&#xff0c;寄存器是一种非常…...

手动下载spacy的en_core_web_sm模型

手动下载 首先&#xff0c;用下面连接下载模型。我下载了 .tar.gz 格式。 然后提取它并通过指定所需子文件夹的路径将其加载到代码中。为了确保路径正确&#xff0c;您应该进入包含 config.cfg 文件的文件夹。 https://github.com/explosion/spacy-models/releases 例子代码…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节&#xff08;如内存地址值没有用二进制&#xff09; 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么&#xff1a;保存在堆中一块区域&#xff0c;同时在栈中有一块区域保存其在堆中的地址&#xff08;也就是我们通常说的该变量指向谁&…...