当前位置: 首页 > news >正文

对进程与线程的理解

目录

1、进程/任务(Process/Task)

2、进程控制块抽象(PCB Process Control Block)

2.1、PCB重要属性

2.2、PCB中支持进程调度的一些属性

3、 内存分配 —— 内存管理(Memory Manage)

4、线程(Thread)

5、进程和线程的总结


 

1、进程/任务(Process/Task)

进程是操作系统对一个正在运行的程序的一种抽象,换言之,可以把进程看做程序的一次运行过程;同时,在操作系统内部,进程又是操作系统进行资源分配的基本单位。

描述进程的是:PCB

组织进程的是:链表

2、进程控制块抽象(PCB Process Control Block)

进程是应用程序被调用时的一个状态,一个进程对应一个PCB,PCB是管理进程的,一个应用程序可以有多个进程。

2.1、PCB重要属性

  • PID,进程的标识符
  • 内存指针,描述进程使用的内存、指令/代码、数据的位置
  • 文件描述符表,进程使用的硬盘的相关信息

2.2、PCB中支持进程调度的一些属性

  • 状态

        用于描述这个进程当前的状态,能够通过状态得知此时是否方便去cpu上执行。

        例如:当某个进程通过Scanner等待用户输入内容时,此时如果用户还未输入内容,该进程就已经去cpu上执行并等待接收用户输入了,如果用户一直不输入,该进程就会一直占用cpu,导致其他进程无法调用执行cpu。

        而有了状态描述,就可以避免让这种进程在还未能执行时的“堵塞状态”,不去占用cpu,等到方便执行时(即用户输入完成后),给出一个“就绪状态”,此时就证明可以该进程可以去cpu上执行。

  • 优先级

        多个进程等待系统调度,这就需要有优先级。用于表示各个进程之间的优先级。

        例如:打游戏时,游戏和微信qq的优先级,想必也知道游戏的优先级更高。

  • 记账信息

        统计每个进程占据cpu的时间,可以根据统计结果进一步调整调度的策略。

  • 上下文

        PCB中的数据结构,支撑进程调度的重要属性,保存进程运行过程中的中间状态到内存中。通过上下文可以做到相当于游戏中的存档和读档操作。

3、 内存分配 —— 内存管理(Memory Manage)

核心结论:每个进程的内存是相互独立、互不干涉的。这是为了保证系统的稳定性,例如某个进程代码出现bug(内存读写越界),那么该bug只会影响自己,不会影响其他进程。

但是也有例外,虽然说进程之间相互独立,但是有的时候需要多个进程相互配合完成某个工作。

记忆:每个人的房子相互独立,但是公园都是大家的公共空间,这两者是不冲突的。
 

4、线程(Thread)

进程频繁的创建和销毁时,会有非常大的开销,主要体现在资源的申请和释放上。为了解决这一问题,就引入了【线程】这个概念,相当于细分了进程

线程也可以称为“轻量级进程”,在进程的基础上做出了改进。

保持了独立调度执行,同时又省去了“申请资源”“释放资源”带来的额外开销。

5、进程和线程的总结

  • 进程是包含线程的,每个进程至少有一个线程存在,即主线程
  • 进程和进程之间不共享内存空间,同一个进程的线程之间共享同一个内存空间(所以资源开销少,但会影响其他线程)。
  • 没有线程这个概念之前,进程是系统分配资源的最小单位,也是系统调度执行的最小单位。
  • 线程这个概念之后,进程是系统分配资源的最小单位,线程是系统调度执行的最小单位。
  • 一个进程挂了一般不会影响到其他进程,但是一个线程挂了, 可能把同进程内的其他线程一起带走(整个进程崩溃)。

正因为线程之间共用同一块内存空间,因此某个线程出现bug时,可能会影响到其他线程。
如何正确处理这些问题,是使用线程的一个难点

附上一个生动的理解图:

 

 【博主推荐】

【数据结构】二叉树的三种遍历(非递归讲解)-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/zzzzzhxxx/article/details/136044643?spm=1001.2014.3001.5501【LeetCode力扣】单调栈解决Next Greater Number(下一个更大值)问题-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/zzzzzhxxx/article/details/136030138?spm=1001.2014.3001.5501【数据结构】二叉搜索树的模拟实现-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/zzzzzhxxx/article/details/135910604?spm=1001.2014.3001.5501

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

相关文章:

对进程与线程的理解

目录 1、进程/任务(Process/Task) 2、进程控制块抽象(PCB Process Control Block) 2.1、PCB重要属性 2.2、PCB中支持进程调度的一些属性 3、 内存分配 —— 内存管理(Memory Manage) 4、线程(Thread)…...

「数据结构」线性表

定义和基本操作 定义:相同数据类型的 n ( n ≥ 0 ) n(n \ge 0) n(n≥0)个数据元素的有限序列,其中n为表长,当n0时线性表是一个空表一般表示: L ( a 1 , a 2 , … … , a i , a i 1 , a n ) L(a_1,a_2,……,a_i,a_{i1},a_n) L(a…...

GEE:关于在GEE平台上进行回归计算的若干问题

作者:CSDN _养乐多_ 记录一些在Google Earth Engine (GEE)平台上进行机器学习回归计算的问题和解释。 文章目录 一、回归1.1 问:GEE平台上可以进行哪些机器学习回归算法?1.2 问:为什么只有这四种&#xf…...

Vivado -RAM

ip_ram 定义了一个名为ip_ram的模块,该模块具有以下端口: sys_clk:系统时钟输入。 sys_rst_n:系统复位输入。 module ip_ram( input sys_clk, input sys_rst_n);wire ram_en ; wire ram_wea …...

备战蓝桥杯---图论之最短路dijkstra算法

目录 先分个类吧: 1.对于有向无环图,我们直接拓扑排序,和AOE网类似,把取max改成min即可。 2.边权全部相等,直接BFS即可 3.单源点最短路 从一个点出发,到达其他顶点的最短路长度。 Dijkstra算法&#x…...

C#系列-C#实现秒杀功能(14)

在C#中实现商品秒杀功能,通常需要考虑并发控制、数据库事务、缓存策略、限流措施等多个方面。下面是一个简单的示例,演示了如何使用C#和数据库来实现一个基本的商品秒杀功能。 首先,假设你有一个商品表(Product)和一个…...

Java ‘Elasticsearch‘ 操作

依赖 <!-- https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-elasticsearch --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</ar…...

【AI视野·今日NLP 自然语言处理论文速览 第七十八期】Wed, 17 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Wed, 17 Jan 2024 (showing first 100 of 163 entries) Totally 100 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Deductive Closure Training of Language Models for Coherence, Accur…...

实验5-4 使用函数计算两点间的距离

本题要求实现一个函数&#xff0c;对给定平面任意两点坐标(x1​,y1​)和(x2​,y2​)&#xff0c;求这两点之间的距离。 函数接口定义&#xff1a; double dist( double x1, double y1, double x2, double y2 );其中用户传入的参数为平面上两个点的坐标(x1, y1)和(x2, y2)&…...

【JavaEE】_JavaScript(Web API)

目录 1. DOM 1.1 DOM基本概念 1.2 DOM树 2. 选中页面元素 2.1 querySelector 2.2 querySelectorAll 3. 事件 3.1 基本概念 3.2 事件的三要素 3.3 示例 4.操作元素 4.1 获取/修改元素内容 4.2 获取/修改元素属性 4.3 获取/修改表单元素属性 4.3.1 value&#xf…...

ARM交叉编译搭建SSH

首先搭建好arm-linux交叉编译环境&#xff0c;开发板和主机可以ping通。 一、下载需要的源码 下载zlib: zlib-1.2.3.tar.gz 下载ssl: openssl-0.9.8d.tar.gz 下载ssh: openssh-4.6p1.tar.gz 二、交叉编译 新建目录/home/leo/ssh&#xff0c;并且将三个源码复制到该目录下。…...

###51单片机学习(2)-----如何通过C语言运用延时函数设计LED流水灯

前言&#xff1a;感谢您的关注哦&#xff0c;我会持续更新编程相关知识&#xff0c;愿您在这里有所收获。如果有任何问题&#xff0c;欢迎沟通交流&#xff01;期待与您在学习编程的道路上共同进步。 目录 一. 延时函数的生成 1.通过延时计算器得到延时函数 2.可赋值改变…...

回归预测模型:MATLAB多项式回归

1. 多项式回归模型的基本原理 多项式回归是线性回归的一种扩展&#xff0c;用于分析自变量 X X X与因变量 Y Y Y之间的非线性关系。与简单的线性回归模型不同&#xff0c;多项式回归模型通过引入自变量的高次项来增加模型的复杂度&#xff0c;从而能够拟合数据中的非线性模式。…...

「计算机网络」数据链路层

数据链路层的地位&#xff1a;网络中的主机、路由器等都必须实现数据链路层信道类型 点对点信道&#xff1a;使用一对一的点对点通信方式广播信道 使用一对多的广播通信方式必须使用专用的共享信道协议来协调这些主机的数据发送 使用点对点信道的数据链路层 数据链路和帧 链…...

【Linux】Ubuntu 22.04 升级 nodejs 到 v18

Ubuntu 22.04 已经安装的nodejs 版本 nodejs is already the newest version (12.22.9~dfsg-1ubuntu3.3). 删除以前的 nodejs 版本&#xff1a; 1. sudo apt remove nodejs rooterp:~# sudo apt remove nodejs Reading package lists... Done Building dependency tree..…...

当go get获取不到软件包时

当使用go get命令获取软件包时&#xff0c;如果无法成功获取&#xff0c;您可以尝试以下方法来解决问题&#xff1a; 检查网络连接&#xff1a;首先&#xff0c;确保您的计算机能够访问互联网&#xff0c;并且没有任何网络防火墙或代理设置阻止了go get命令的正常运行。 设置代…...

全网最详细解法|同济大学|高等数学|第八版|习题1-5

文章目录 全网最详细解法&#xff5c;同济大学&#xff5c;高等数学&#xff5c;第八版&#xff5c;习题1-5&#xff5c;5.1全网最详细解法&#xff5c;同济大学&#xff5c;高等数学&#xff5c;第八版&#xff5c;习题1-5&#xff5c;5.2 全网最详细解法&#xff5c;同济大学…...

可视化工具:将多种数据格式转化为交互式图形展示的利器

引言 在数据驱动的时代&#xff0c;数据的分析和理解对于决策过程至关重要。然而&#xff0c;不同的数据格式和结构使得数据的解读变得复杂和困难。为了解决这个问题&#xff0c;一种强大的可视化工具应运而生。这个工具具有将多种数据格式&#xff08;包括JSON、YAML、XML、C…...

[嵌入式AI从0开始到入土]14_orangepi_aipro小修补含yolov7多线程案例

[嵌入式AI从0开始到入土]嵌入式AI系列教程 注&#xff1a;等我摸完鱼再把链接补上 可以关注我的B站号工具人呵呵的个人空间&#xff0c;后期会考虑出视频教程&#xff0c;务必催更&#xff0c;以防我变身鸽王。 第1期 昇腾Altas 200 DK上手 第2期 下载昇腾案例并运行 第3期 官…...

机器学习、深度学习、强化学习、迁移学习的关联与区别

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本文主要了解并初步探究机器学习、深度学习、强化学习、迁移学习的关系与区别&#xff0c;通过清晰直观的关系图展现出四种“学习”之间的关系。虽然这四种“学习”方法在理论和应用上存在着一定的区别&#xff0c;但它们之间也…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

ZYNQ学习记录FPGA(一)ZYNQ简介

一、知识准备 1.一些术语,缩写和概念&#xff1a; 1&#xff09;ZYNQ全称&#xff1a;ZYNQ7000 All Pgrammable SoC 2&#xff09;SoC:system on chips(片上系统)&#xff0c;对比集成电路的SoB&#xff08;system on board&#xff09; 3&#xff09;ARM&#xff1a;处理器…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件&#xff0c;这个上传文件是整体功能的一部分&#xff0c;文件在上传的过程中…...

前端调试HTTP状态码

1xx&#xff08;信息类状态码&#xff09; 这类状态码表示临时响应&#xff0c;需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分&#xff0c;客户端应继续发送剩余部分。 2xx&#xff08;成功类状态码&#xff09; 表示请求已成功被服务器接收、理解并处…...