当前位置: 首页 > news >正文

知识图谱:py2neo将csv文件导入neo4j

文章目录

        • 安装py2neo
        • 创建节点-连线关系图
        • 导入csv文件
        • 删除重复节点并连接边

安装py2neo

安装python中的neo4j操作库:pip install py2neo
安装py2neo后我们可以使用其中的函数对neo4j进行操作。

图数据库Neo4j中最重要的就是结点和边(关系),结点之间靠边联系在一起,每个结点也有属于自己的属性。

也就是说我们在用pyhton操作Neo4j的时候只需要创造出节点(Node )和节点之间的关系:边(Relationship ),如果节点存在附加属性,可以再给结点附上一些属性。

注意: 在我们用python的时候我们必须启动Neo4j。如图所示,点击connect进行连接。

在这里插入图片描述

创建节点-连线关系图

下面我们就创建三个结点,每个结点有两个属性,两结点之间有一个关系。

from py2neo import Graph, Node, Relationship
# 连接neo4j数据库,输入地址、用户名、密码
graph = Graph("http://localhost:7474", name="neo4j", password='123456SWXR')
graph.delete_all() #清除neo4j中原有的结点等所有信息# 创建结点
node1 = Node('person', name = 'chenjianbo')   #该结点语义类型是person  结点名字是chenjianbo  也是它的属性
node2 = Node('major',name = 'software')       #该结点语义类型是major  结点名字是software  也是它的属性
node3 = Node('person',name = 'bobo')          #该结点语义类型是person  结点名字是bobo   也是它的属性#给结点node1 添加一个属性 age
node1['age'] = 18
#给结点node2 添加一个属性 college
node2['college'] = 'software college'
#给结点node3 添加一个属性 sex
node3['sex'] = '男'#把结点实例化 在Neo4j中显示出来
graph.create(node1)
graph.create(node2)
graph.create(node3)
# 创建关系
maojor = Relationship(node1, '专业', node2)
friends = Relationship(node1, '朋友', node3)
maojor1 = Relationship(node3, '专业', node2)
#把关系实例化 在Neo4j中显示出来
graph.create(maojor)
graph.create(maojor1)
graph.create(friends)

在这里插入图片描述

导入csv文件

该网站有大量汇总的知识图谱数据集,可供学习使用。
http://openkg.cn/dataset

在这里插入图片描述

周杰伦歌曲知识数据集csv,应用三元组的形式将歌曲歌手所属专辑联系在一起。

在这里插入图片描述

  • dataframe格式读入数据
import pandas as pddf = pd.read_csv('relation.csv',index_col=0)df
	Column1	Column2	Column3
id			
1	Dare for more	周杰伦	歌手
2	Dare for more	蔡依林	歌手
6	Mine Mine	惊叹号	所属专辑
7	Now You See Me	周杰伦	歌手
8	Now You See Me	方文山	作词
...	...	...	...
624	最后的战役	周杰伦	歌手
625	最后的战役	方文山	作词
626	最后的战役	八度空间	所属专辑
627	最长的电影	周杰伦	歌手
628	最长的电影	我很忙	所属专辑
  • 使用py2neoneo4j添加节点和边
graph.delete_all() #清除neo4j中原有的结点等所有信息for index,row in df.iterrows():node1 = Node('person',name=row[0])node2 = Node('person',name=row[1])graph.create(node1)graph.create(node2)each = Relationship(node1, row[2], node2)graph.create(each)

在这里插入图片描述
这样生成的知识图谱只是简单的节点-边的关系,存在大量冗余的实体entity

可以通过neo4j的删除方法将重复节点进行删除,之后将边重新连接。

删除重复节点并连接边

查询重复节点,如果有重复节点就不create。这样节点和边全部联系在一起,形成完整的没有冗余的知识图谱。

目前的缺点是节点Node的命名都是以person命名,所以节点暂时没有区分。

graph.delete_all() #清除neo4j中原有的结点等所有信息
from py2neo import NodeMatcher
entity = []for index,row in df.iterrows():if row[0] not in entity:entity.append(row[0])node1 = Node('person',name=row[0])graph.create(node1)else:node_matcher = NodeMatcher(graph) node1 = list(node_matcher.match('person').where(name=row[0]))[0]print(node1)if row[1] not in entity:entity.append(row[1])  node2 = Node('person',name=row[1])graph.create(node2)else:node_matcher = NodeMatcher(graph) node2 = list(node_matcher.match('person').where(name=row[1]))[0]print(node2)each = Relationship(node1, row[2], node2)graph.create(each)

在这里插入图片描述

相关文章:

知识图谱:py2neo将csv文件导入neo4j

文章目录 安装py2neo创建节点-连线关系图导入csv文件删除重复节点并连接边 安装py2neo 安装python中的neo4j操作库:pip install py2neo 安装py2neo后我们可以使用其中的函数对neo4j进行操作。 图数据库Neo4j中最重要的就是结点和边(关系)&a…...

备战蓝桥杯---图论之最短路Bellman-Ford算法及优化

目录 上次我们讲到复杂度为(nm)logm(m为边,n为点)的迪杰斯特拉算法,其中有一个明显的不足就是它无法解决包含负权边的图。 于是我们引进Bellman-Ford算法。 核心:枚举所有的点,能松弛就松弛,直…...

C++ //练习 5.19 编写一段程序,使用do while循环重复地执行下述任务:首先提示用户输入两个string对象,然后挑出较短的那个并输出它。

C Primer(第5版) 练习 5.19 练习 5.19 编写一段程序,使用do while循环重复地执行下述任务:首先提示用户输入两个string对象,然后挑出较短的那个并输出它。 环境:Linux Ubuntu(云服务器&#x…...

算法刷题:有效三角形个数

有效三角形个数 .题目链接题目详情算法原理补充知识点双指针:对撞指针 我的答案 . 题目链接 有效三角形个数 题目详情 算法原理 补充知识点 有效三角形需要满足的条件: ab>cac>bbc>a 其实在满足1的时候,c是最大的,那么2和3是显然成立的,因此我们可以这样解题: 对…...

python---变量

1.变量就是存储数据的空间,在内存上; 2.变量命名规则:(1)由数字,字母,下划线组成,数字不能开头; (2)不能和关键字冲突; (…...

数据库第二次实验

目录 1 实验内容 2 SQL代码及运行截图 2.1 创建表并插入数据 2.1.1 创建表 2.1.2 插入数据 2.1.3 运行截图 2.2 修改表 2.2.1 SQL代码 2.2.2 运行截图 2.3 删除操作 2.3.1 SQL代码 2.3.2 运行截图 2.4 数据库的备份 2.5 数据库的恢复 1 实验内容 实验目的&#…...

容器高级知识:Kubernetes Pod 适配器模式详解

Kubernetes Pod 适配器(Adapter)模式详解 Kubernetes Pod 适配器模式是侧车(Sidecar)模式的一个特例,其中使用专用的 适配器容器 在主应用程序容器和其他服务或客户端之间 翻译 数据或信号。它充当桥梁,调整通信格式或协议以实现…...

云原生容器化-5 Docker常见操作命令

1.登录和退出docker仓库 使用docker login和docker logout分别用于登录和退出docker仓库。 #登录时携带用户名、密码、仓库地址信息 docker login --username test --password test123 192.168.0.22:8000 docker login --username seong --password 3er4#ER$ 192.168.0.22:8…...

几道简单的题目练一下手感

第 1 题 【 问答题 】 • 找和为K的两个元素 在一个长度为n(n < 1000)的整数序列中&#xff0c;判断是否存在某两个元素之和为k。 时间限制&#xff1a;1000 内存限制&#xff1a;65536 输入 第一行输入序列的长度n和k&#xff0c;用空格分开。 第二行输入序列中的n个整数&a…...

2023年哪个前端框架用的最多?

2023 年&#xff0c;TypeScript 的每月下载量持续稳定增长&#xff0c;年度累计下载量高达2,071,832,110&#xff08;20.7 亿&#xff09;&#xff0c;展现了强大的市场需求和用户认可。 本文来通过详细的数据&#xff08;2023 年 npm 累计下载量&#xff09;&#xff0c;看看…...

基于BitVM的乐观 BTC bridge

1. 引言 前序博客&#xff1a; 区块链互操作协议Bitcoin Bridge&#xff1a;治愈还是诅咒&#xff1f;BitVM&#xff1a;Bitcoin的链下合约 基于BitVM的乐观 BTC bridge&#xff1a; Trust-minimized two-way peg 机制 BitVM BTC bridge背后的主要思想是&#xff1a; 为比…...

谷歌浏览器安装扩展程序axure-chrome-extension

注&#xff1a; 文末附扩展附件&#xff1a;axure-chrome-extension_v0.7.0.crx 1、安装扩展程序axure-chrome-extension 找到axure-chrome-extension.crx&#xff0c;把axure-chrome-extension.crx后缀改为zip&#xff0c;然后解压&#xff0c;得到一个文件夹 2、打开谷歌浏览…...

C++学习:大小写转换

islower/isupper函数 islower和isupper是C标准库中的字符分类函数&#xff0c;用于检查一个字符是否为小写字母或大写字母。 islower和isupper函数需要包含头文件&#xff0c;也可用万能头文<bits/stdc.h>包含。 函数返回值为bool类型。 char ch1 A; char ch2 a;//…...

【王道数据结构】【chapter5树与二叉树】【P159t16】

试设计判断两棵二叉树是否相似的算法。所谓二叉树T1和T2相似&#xff0c;指的是T1和T2都是空的二叉树或都只有一个根节点&#xff1b;或者T1的左子树和T2的左子树是相似的&#xff0c;且T1的右子树和T2的右子树是相似的 #include <iostream> #include <stack> #inc…...

代码随想录算法训练营第51天 | 139.单词拆分 多重背包理论基础

单词拆分 这道题最后是判断能否组成&#xff0c;很像回溯法的问题形式&#xff0c;和分割回文串那道题比较类似&#xff0c;所以是可以用回溯法解决的&#xff0c;但是回溯法需要使用记忆化递归来避免超时。 class Solution{ public:bool backtracking(const string s, const …...

weilai8游戏爬虫

#!/usr/bin/python # -*- coding: UTF-8 -*- #!/usr/bin/python # -*- coding: UTF-8 -*- import os,csv import re import random import time import requests from lxml import etreefrom urllib.parse import quote, unquotepage98 sess requests.Session()#创建一个sessi…...

【Java程序设计】【C00261】基于Springboot的休闲娱乐代理售票系统(有论文)

基于Springboot的休闲娱乐代理售票系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的休闲娱乐代理售票系统 本系统分为系统功能模块、管理员功能模块以及用户功能模块。 系统功能模块&#xff1a;休闲娱乐代理…...

【Linux】学习-基础IO拓展篇

Linux基础IO拓展篇—详解文件系统 理解文件系统 在Linux基础IO篇中&#xff0c;我们站在用户的视角对文件进行了理解&#xff0c;主要是针对被打开的文件&#xff0c;那么有没有没有被打开的文件呢&#xff1f;当然有&#xff01;今天我们换个视角&#xff0c;来站在系统的角…...

算法详解(力扣141——环形链表系列)

博主ID&#xff1a;代码小豪 文章目录 环形链表环形链表的性质分析快慢指针法指针的追及相遇问题 环形链表&#xff08;2&#xff09; 环形链表 先来看看环形链表的原题&#xff1a; 中间的部分叙述有点繁杂&#xff0c;简单来概括就是&#xff0c;假如有一个节点&#xff0c…...

浅谈路由器交换结构

一、路由器技术概述 路由器&#xff08;Router&#xff09;是连接两个或多个网络的硬件设备&#xff0c;在网络间起网关的作用&#xff0c;是读取每一个数据包中的地址然后决定如何传送的专用智能性的网络设备。它能够理解不同的协议&#xff0c;例如某个局域网使用的以太网协议…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...