当前位置: 首页 > news >正文

Duilib List 控件学习

这是自带的一个示例;

一开始运行的时候List中是空的,点击Search按钮以后就填充列表框;

先看一下列表框列头是在xml文件中形成的;

<List name="domainlist" bkcolor="#FFFFFFFF" ... menu="true">
   <ListHeader height="24" menu="true">
      <ListHeaderItem text="No" ... sepwidth="1"/>
      <ListHeaderItem text="Domain" ... sepwidth="1"/>
      <ListHeaderItem text="Description" ... sepwidth="1"/>
   </ListHeader>
</List>

WinMain里面主要是读取资源文件,创建主框架窗口;

然后看一下Search按钮相关的;

此按钮在xml文件中的name为"btn";
在代码中使用如下一句,
    m_pSearch = static_cast<CButtonUI*>(m_pm.FindControl(_T("btn"))

相关文章:

Duilib List 控件学习

这是自带的一个示例; 一开始运行的时候List中是空的,点击Search按钮以后就填充列表框; 先看一下列表框列头是在xml文件中形成的; <List name="domainlist" bkcolor="#FFFFFFFF" ... menu="true"> <ListHeader height="24…...

详细了解Node.js的配置与使用!

详细了解Node.js的配置与使用&#xff01; Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境。它允许开发者在服务器端运行 JavaScript&#xff0c;从而实现全栈 JavaScript 开发。本文将介绍 Node.js 的配置和 npm 的应用。 一、Node.js 配置 下载与安装 首先&…...

OpenCV 移动最小二乘图像变形

文章目录 一、简介二、实现代码三、实现效果参考文献一、简介 在现实生活中,我们常常应用一些刚性的变换来实现物体的旋转平移,对于非刚性的变换我们都没有在意,其实这种变换也是无处不在的,如我们经常看的动画就可以通过一些非刚性的变换达到一些非常夸张的效果。这里,我…...

【深度学习】S2 数学基础 P4 概率论

目录 基本概率论概率论公理随机变量 多个随机变量联合概率条件概率贝叶斯定理求和法则独立性 期望与方差小结 基本概率论 机器学习本质上&#xff0c;就是做出预测。而概率论提供了一种量化和表达不确定性水平的方法&#xff0c;可以帮助我们量化对某个结果的确定性程度。 在…...

跟我学c++中级篇——静态多态

一、多态 Polymorphism&#xff0c;多态。学习过c的人如果不知道多态&#xff0c;基本上就是打入c内部的C程序员了。在前边曾经对多态进行过分析&#xff0c;对其中的虚函数&#xff08;虚表等&#xff09;也进行过较为详细的说明。 多态其实非常好理解&#xff0c;不要硬扣书…...

设计模式--桥接模式(Bridge Pattern)

桥接模式&#xff08;Bridge Pattern&#xff09;是一种结构型设计模式&#xff0c;它主要是用于将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。 桥接模式主要包含以下几个角色&#xff1a; Abstraction&#xff08;抽象类&#xff09;&#xff1a;定义抽象类的…...

统计图饼图绘制方法(C语言)

统计图饼图绘制方法&#xff08;C语言&#xff09; 常用的统计图有条形图、柱形图、折线图、曲线图、饼图、环形图、扇形图。 前几类图比较容易绘制&#xff0c;饼图绘制较难。今值此介绍饼图的绘制方法。 本方法采用C语言的最基本功能&#xff1a; &#xff08; 1.&#xff09…...

洛谷C++简单题小练习day12—寻找最小值小程序

day12--寻找最小值--2.16 习题概述 题目描述 给出 n 和 n 个整数 ai​&#xff0c;求这 n 个整数中最小值是什么。 输入格式 第一行输入一个正整数 n&#xff0c;表示数字个数。 第二行输入 n 个非负整数&#xff0c;表示 1,2…a1​,a2​…an​&#xff0c;以空格隔开。 …...

相机图像质量研究(13)常见问题总结:光学结构对成像的影响--鬼影

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…...

车载诊断协议DoIP系列 —— 车辆以太网节点需求汇总

车载诊断协议DoIP系列 —— 车辆以太网节点需求汇总 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一碗茶,…...

掘根宝典之C++包含对象的类,私有继承,保护继承,三大继承方式总结

包含对象成员的类 包含&#xff0c;组合和层次化&#xff1a;一个类里面的类成员之一是个类对象 我们来看个例子 #include<iostream> using namespace std; class AA { private:int a_; public:AA(int a):a_(a){}void A(){cout << a_ << endl;} }; class …...

第六篇:MySQL图形化管理工具

经过前五篇的学习&#xff0c;对于数据库这门技术的理解&#xff0c;我们已经在心中建立了一个城堡大致的雏形&#xff0c;通过命令行窗口&#xff08;cmd&#xff09;快速上手了【SQL语法-DDL-数据定义语言】等相关命令 道阻且长&#xff0c;数据库技术这一宝藏中还有数不清的…...

计算机网络——12DNS

DNS DNS的必要性 IP地址标识主机、路由器但IP地址不好记忆&#xff0c;不便于人类用使用&#xff08;没有意义&#xff09;人类一般倾向于使用一些有意义的字符串来标识Internet上的设备存在着“字符串”——IP地址的转换的必要性人类用户提供要访问机器的“字符串”名称由DN…...

vue3-应用规模化-工具链

工具链 项目脚手架 Vite Vite 是一个轻量级的、速度极快的构建工具&#xff0c;对 Vue SFC 提供第一优先级支持。作者是尤雨溪&#xff0c;同时也是 Vue 的作者&#xff01; 要使用 Vite 来创建一个 Vue 项目&#xff0c;非常简单&#xff1a; &#xff08;推荐&#xff09…...

EasyExcel动态列导出

测试代码地址&#xff1a;https://gitee.com/wangtianwen1996/cento-practice/tree/master/src/test/java/com/xiaobai/easyexcel/dynamiccolumn 官方文档&#xff1a;https://easyexcel.opensource.alibaba.com/docs/2.x/quickstart/write 一、实现方式 1、根据需要导出的列…...

JAVA面试题11

什么是Java的访问修饰符&#xff0c;并列出它们的作用。 Java的访问修饰符包括public、private、protected和默认。它们的作用如下&#xff1a; public: 可以被任何其他类访问。 private: 只能被所在类访问&#xff0c;其他类无法访问。 protected: 可以被所在类和同一个包中的…...

工业数据采集的时间不确定性及PLC-Recorder的通道偏移功能

目录 一、缘起 二、效果展示 三、设置方法 四、小结 一、缘起 大家都知道采集软件首先要尽可能还原数据原来的状态&#xff0c;给用户提供一个可以信赖的参考。但是&#xff0c;数据采集又有很多随机因素&#xff1a;Windows是一个周期不严格的系统、以太网通讯有时间波动、…...

十五、Object 类

文章目录 Object 类6.1 public Object()6.2 toString方法6.3 hashCode和equals(Object)6.4 getClass方法6.5 clone方法6.6 finalize方法 Object 类 本文为书籍《Java编程的逻辑》1和《剑指Java&#xff1a;核心原理与应用实践》2阅读笔记 java.lang.Object类是类层次结构的根…...

计算机网络——06分组延时、丢失和吞吐量

分组延时、丢失和吞吐量 分组丢失和延时是怎样发生的 在路由器缓冲区的分组队列 分组到达链路的速率超过了链路输出的能力分组等待排到队头、被传输 延时原因&#xff1a; 当当前链路有别的分组进行传输&#xff0c;分组没有到达队首&#xff0c;就会进行排队&#xff0c;从…...

[C#] 如何调用Python脚本程序

为什么需要C#调用python&#xff1f; 有以下几个原因需要C#调用Python&#xff1a; Python拥有丰富的生态系统&#xff1a;Python有很多强大的第三方库和工具&#xff0c;可以用于数据科学、机器学习、自然语言处理等领域。通过C#调用Python&#xff0c;可以利用Python的生态系…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

CppCon 2015 学习:Time Programming Fundamentals

Civil Time 公历时间 特点&#xff1a; 共 6 个字段&#xff1a; Year&#xff08;年&#xff09;Month&#xff08;月&#xff09;Day&#xff08;日&#xff09;Hour&#xff08;小时&#xff09;Minute&#xff08;分钟&#xff09;Second&#xff08;秒&#xff09; 表示…...

用鸿蒙HarmonyOS5实现国际象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的国际象棋小游戏的完整实现代码&#xff0c;使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├── …...

联邦学习带宽资源分配

带宽资源分配是指在网络中如何合理分配有限的带宽资源&#xff0c;以满足各个通信任务和用户的需求&#xff0c;尤其是在多用户共享带宽的情况下&#xff0c;如何确保各个设备或用户的通信需求得到高效且公平的满足。带宽是网络中的一个重要资源&#xff0c;通常指的是单位时间…...

链结构与工作量证明7️⃣:用 Go 实现比特币的核心机制

链结构与工作量证明:用 Go 实现比特币的核心机制 如果你用 Go 写过区块、算过哈希,也大致理解了非对称加密、数据序列化这些“硬核知识”,那么恭喜你,现在我们终于可以把这些拼成一条完整的“区块链”。 不过别急,这一节我们重点搞懂两件事: 区块之间是怎么连接成“链”…...

Continue 开源 AI 编程助手框架深度分析

Continue 开源 AI 编程助手框架深度分析 一、项目简介 Continue 是一个模块化、可配置、跨平台的开源 AI 编程助手框架&#xff0c;目标是让开发者能在本地或云端环境中&#xff0c;快速集成和使用自定义的 LLM 编程辅助工具。它通过支持 VS Code 与 JetBrains 等主流 IDE 插件…...

夏普比率(Sharpe ratio)​

具有投资常识的人都明白&#xff0c;投资光看收益是不够的&#xff0c;还要看承受的风险&#xff0c;也就是收益风险比。 夏普比率描述的正是这个概念&#xff0c;即每承受一单位的总风险&#xff0c;会产生多少超额的报酬。 用数学公式描述就是&#xff1a; 其中&#xff1…...