算法-----高精度2(高精度乘法,高精度除法,高精度斐波那锲数列)
高精度乘法
对于高精度乘法来说似乎不像高精度加减法那样简单了,我们似乎得一个一个加了,因为我们都知道
a×b=a+a+a+a+a…+a(b个a)。如果真要这要的话那1e9*1e9不得超时啊,所以不能这样,我们还是得从乘法竖式入手

这样看似乎看不出来什么,那我们可以对其改变下模式可以进行撤位看看

这样就撤位成功了,但肯定不是 最后结果,每一位都要化成一位数。但是我们可以先等等,观察一下规律。不难发现当逆序存储后,我们做乘法竖式模拟时,c[i+j]+=a[i]*b[j](下标从零开始)。

最后我们只需进下位就行了。
所以我们的思路来了:
1.枚举a枚举b,相乘再加到c里
2.加完之后再进位
3,别忘去掉前导零
好的开始代码环节
初始化(不多说)
string s1,s2;
const int N=2050;
int a[N],b[N],c[N],len1,len2,len3;
读入
void Read(){cin>>s1>>s2;len1=s1.size(),len2=s2.size();len3=len1+len2; //c数组的长度,因为公式是c[i+j]+=a[i]*b[j],所以i+j的最大值就是c的长度for(int i=0;i<len1;i++) a[i]=(s1[len1-i-1]-'0');for(int j=0;j<len2;j++) b[j]=(s2[len2-j-1]-'0');
}
模拟竖式
void count(){for(int i=0;i<len1;i++){//枚举afor(int j=0;j<len2;j++){//枚举bc[i+j]+=a[i]*b[j];//公式}} for(int i=0;i<len3;i++){//进位if(c[i]>=10){c[i+1]+=c[i]/10;c[i]%=10;}}while(len3>0&&c[len3-1]==0) len3--; //去前导零
}
输出
void print(){for(int i=len3-1;i>=0;i--) cout<<c[i];
}
总代码
#include<bits/stdc++.h>
using namespace std;
string s1,s2;
const int N=2050;
int a[N],b[N],c[N],len1,len2,len3;
void Read(){cin>>s1>>s2;len1=s1.size(),len2=s2.size();len3=len1+len2;for(int i=0;i<len1;i++) a[i]=(s1[len1-i-1]-'0');for(int j=0;j<len2;j++) b[j]=(s2[len2-j-1]-'0');
}
void count(){for(int i=0;i<len1;i++){for(int j=0;j<len2;j++){c[i+j]+=a[i]*b[j];}} for(int i=0;i<len3;i++){if(c[i]>=10){c[i+1]+=c[i]/10;c[i]%=10;}}while(len3>0&&c[len3-1]==0) len3--;
}
void print(){for(int i=len3-1;i>=0;i--) cout<<c[i];
}
int main()
{
Read();
count();
print();return 0;
}
高精度除法
高精度除以低精度
因为除数是低精度,所以我们不用竖式就能解,用逐位相除法。

初始化+读入(因为是除法所以不用逆序存储,正着就行)
string s;
const int N=1050;
int a[N],c[N],b,len,lenc=1,x;
void Read(){cin>>s>>b;len=s.size();for(int i=1;i<=len;i++) a[i]=s[i-1]-'0';//顺着存
}
运算
因为除法如果不够除的话是填零(或是有余),我们可以将不够除(或除完的余数)的放入后面让他和后面的数一起除,不过要注意*10因为他们的单位不同,当然有时候我们会求余数,所以我们可以带入余数让计算的更简单些。
void count(){for(int i=1;i<=len;i++){c[i]=(x*10+a[i])/b;//带着余数除当除到最后一位时%后就是余数x=(x*10+a[i])%b;}while(lenc<len&&c[lenc]==0) lenc++;
}
输出
void print(){while(lenc<=len) cout<<c[lenc++];cout<<"\n";cout<<x;
}
总代码
#include<bits/stdc++.h>
using namespace std;
string s;
const int N=1050;
int a[N],c[N],b,len,lenc=1,x;
void Read(){cin>>s>>b;len=s.size();for(int i=1;i<=len;i++) a[i]=s[i-1]-'0';
}
void count(){for(int i=1;i<=len;i++){c[i]=(x*10+a[i])/b;x=(x*10+a[i])%b;}while(lenc<len&&c[lenc]==0) lenc++;
}
void print(){while(lenc<=len) cout<<c[lenc++];cout<<"\n";cout<<x;
}
int main()
{
Read();
count();
print();return 0;
}
高精度除以高精度
高精度除以高精度,第一眼肯定是竖式,但你用竖式算过后会发现,似乎难找到怎么做。所以我们得从其他方面入手,先看看除法算式a/b,平平无奇,写下结果后呢?a/b=c…d,看到这个算式大家应该有点印象了,二三年级时我们学习的除法各个元素之间的关系:
1.a=b×c+d
2.b=(a-d)/c
3.c=(a-d)/b
4.d=a-b×c
随后我们再回顾下除法的定义:把一个数平均分成几份。根据这几条不难发现,a/b,不就是a-c个b吗
所以我们便能开始写代码了
初始化+读入(注意这里出现减法了得倒序)
#define N 1050
int a[N],b[N],c[N],d,i;
void init(int a[]){string s;cin>>s;a[0]=s.size();for(int i=1;i<=a[0];i++) a[i]=s[a[0]-i]-'0';
}
判断大小函数(因为是减法替除法,要判断下,如果a<b就要终止)
int compare(int a[],int b[]){ int i;if(a[0]>b[0]) return 1;if(a[0]<b[0]) return -1;for(i=a[0];i>0;i--){if(a[i]>b[i]) return 1;if(a[i]<b[i]) return -1;}return 0;
}
移动函数,因为单位不统一,要将单位统一才能做减法
void numcpy(int p[],int q[],int det){for(int i=1;i<=p[0];i++) q[i+det-1]=p[i];q[0]=p[0]+det-1;
}
减法函数与除法函数
void jian(int a[],int b[]){int flag,i;flag=compare(a,b);if(flag==0){a[0]=0;return;}if(flag==1){for(i=1;i<=a[0];i++){if(a[i]<b[i]){a[i+1]--;a[i]+=10;}a[i]-=b[i]; }while(a[0]>0&&a[a[0]]==0) a[0]--;return; }
}
void chugao(int a[],int b[],int c[]){int i,tmp[N];c[0]=a[0]-b[0]+1;for(i=c[0];i>0;i--){memset(tmp,0,sizeof tmp);numcpy(b,tmp,i);while(compare(a,tmp)>=0){c[i]++;jian(a,tmp);}}while(c[0]>0&&c[c[0]]==0) c[0]--;return;
}
最后输出
void print(int a[]){int i;if(a[0]==0){cout<<0<<endl;return;}for(i=a[0];i>0;i--) cout<<a[i];cout<<endl;return;
}
总代码
#include<bits/stdc++.h>
using namespace std;
#define N 1050
int a[N],b[N],c[N],d,i;
void init(int a[]){string s;cin>>s;a[0]=s.length();for(int i=1;i<=a[0];i++) a[i]=s[a[0]-i]-'0';
}
void print(int a[]){int i;if(a[0]==0){cout<<0<<endl;return;}for(i=a[0];i>0;i--) cout<<a[i];cout<<endl;return;
}
int compare(int a[],int b[]){ int i;if(a[0]>b[0]) return 1;if(a[0]<b[0]) return -1;for(i=a[0];i>0;i--){if(a[i]>b[i]) return 1;if(a[i]<b[i]) return -1;}return 0;
}
void jian(int a[],int b[]){int flag,i;flag=compare(a,b);if(flag==0){a[0]=0;return;}if(flag==1){for(i=1;i<=a[0];i++){if(a[i]<b[i]){a[i+1]--;a[i]+=10;}a[i]-=b[i]; }while(a[0]>0&&a[a[0]]==0) a[0]--;return; }
}
void numcpy(int p[],int q[],int det){for(int i=1;i<=p[0];i++) q[i+det-1]=p[i];q[0]=p[0]+det-1;
}
void chugao(int a[],int b[],int c[]){int i,tmp[N];c[0]=a[0]-b[0]+1;for(i=c[0];i>0;i--){memset(tmp,0,sizeof tmp);numcpy(b,tmp,i);while(compare(a,tmp)>=0){c[i]++;jian(a,tmp);}}while(c[0]>0&&c[c[0]]==0) c[0]--;return;
}
int main()
{
init(a);
init(b);
chugao(a,b,c);
print(c);
print(a);//通过减法最后的a就是余数return 0;
}
高精度斐波那契数列
f[1]=1
f[2]=1
f[i]=f[i−1]+f[i−2]
求f[n]
输入
输入一个整数n
输出
输出一个整数
样例
输入 1
3
输出 1
2
提示
n<=200
【分析】这题目肯定要高精度的因为当n到100时都已经是354224848179261915075(别问我答案哪来的)了,long long 都存不下,所以的用高精度加法一步步加
好的高精度加法模板来了(没有读入)
const int N=1050;
int a[N],b[N],c[N],len=1,len1=1,len2=1;
void count(){int jw=0;for(int i=0;i<len;i++){c[i]=jw+a[i]+b[i];jw=c[i]/10;c[i]%=10;}if(jw==1){c[len]=1;len++;}while(len>1&&c[len-1]==0) len--;
}
void print(){
for(int i=len-1;i>=0;i--) cout<<c[i];
}
然后主函数部分是输出n,
对于这个n我们得先特判掉一些
if(n==1||n==2){cout<<1;return 0;
}
随后因为斐波那锲数列数f(n)=f(n-1)+f(n-2),我们的先存入前两项
a[0]=1;
b[0]=1;
然后就是动规的模板了
for(int i=3;i<=n;i++){
c=a+b;
a=b;
b=c;
}
简单带入下便是
for(int i=3;i<=n;i++)
{count();len1=len2;for(int i=0;i<len2;i++){//数组赋值a[i]=b[i];}len2=len;for(int i=0;i<len;i++) b[i]=c[i];
}
最后别忘记输出
总代码
#include<bits/stdc++.h>
using namespace std;
const int N=1050;
int a[N],b[N],c[N],len=1,len1=1,len2=1;
void count(){int jw=0;for(int i=0;i<len;i++){c[i]=jw+a[i]+b[i];jw=c[i]/10;c[i]%=10;}if(jw==1){c[len]=1;len++;}while(len>1&&c[len-1]==0) len--;
}
void print(){
for(int i=len-1;i>=0;i--) cout<<c[i];
}
int main(){
int n;
cin>>n;
if(n==1||n==2){cout<<1;return 0;
}
a[0]=1;
b[0]=1;
for(int i=3;i<=n;i++)
{count();len1=len2;for(int i=0;i<len2;i++){a[i]=b[i];}len2=len;for(int i=0;i<len;i++) b[i]=c[i];
}
print();
return 0;
}
完结!
相关文章:
算法-----高精度2(高精度乘法,高精度除法,高精度斐波那锲数列)
高精度乘法 对于高精度乘法来说似乎不像高精度加减法那样简单了,我们似乎得一个一个加了,因为我们都知道 abaaaaa…a(b个a)。如果真要这要的话那1e9*1e9不得超时啊,所以不能这样,我们还是得从乘法竖式入手 这样看似乎看不出来什…...
windows vs 自己编译源码 leveldb 然后使用自己编译的文件
1 准备源码文件 1.1 第一种方法 git下载源码 vs项目中git leveldb源码和git third_party googletest-CSDN博客 1.2 第二种方法 手动下载 然后把第三方的源码下载 复制到 third_party 对应的文件夹中 没有文件夹 third_party -> powershell mkdir third_party 2 编译lev…...
基于GPT一键完成数据分析全流程的AI Agent: Streamline Analyst
大型语言模型(LLM)的兴起不仅为获取知识和解决问题开辟了新的可能性,而且催生了一些新型智能系统,例如旨在辅助用户完成特定任务的AI Copilot以及旨在自动化和自主执行复杂任务的AI Agent,使得编程、创作等任务变得高效…...
C语言-----习题
1.通过这个例题,我们可以知道*p.a是无法打印99的,因为.的优先级比解引用*高; struct S {int a;int b; }; int main() {struct S a, * p &a;//可以分为两部分理解//struct S a;//struct S *p &a;a.a 99;printf("%d\n"…...
Java学习笔记(五)
目录 一、控制结构 1.1 顺序控制 1.2 分支控制 (一)单分支 (二)双分支 (三)多分支 (四)嵌套分支 (五)switch分支 1.3 循环控制 (一&…...
4.【Linux】进程控制(进程终止||进程等待||程序替换)
一.进程创建fork 见上篇文章 二.进程的终止 1.进程退出场景 1.代码运行完毕,结果正确,通过main函数退出码返回一般为0。 2.代码运行完毕,结果不正确,通过不同的退出码标识不同的错误原因。 3.代码异常终止(信号&am…...
微服务设计:Spring Cloud 链路追踪概述
Spring Cloud 链路追踪是指在分布式系统中追踪请求路径的技术。它可以帮助开发者了解请求在各个微服务之间是如何流转的,以及每个微服务处理请求所花费的时间。链路追踪可以用于解决以下问题: 性能分析: 识别性能瓶颈,优化微服务性能。故障排…...
【MySQL/Redis】如何实现缓存一致
目录 不实用的方案 1. 先写 MySQL , 再写 Redis 2. 先写 Redis , 再写MySQL 3. 先删 Redis,再写 MySQL 实用的方案 1. 先删 Redis,再写 MySQL, 再删 Redis 2. 先写 MySQL , 再删 Redis 3. 先写MySQL,通过BinLog࿰…...
Socket.D 开源输传协议 v2.4.0 发布
Socket.D 协议 是基于"事件"和"语义消息""流"的网络应用层传输协议。有用户说,“Socket.D 之于 Socket,尤如 Vue 之于 Js、Mvc 之于 Http”。支持 tcp, udp, ws, kcp 传输。协议特点可参考《官网介绍》。 pyton 已开发完…...
单片机学习笔记---AT24C02数据存储
目录 AT24C02数据存储 准备工作 代码讲解 I2C.c 模拟起始位置的时序 模拟发送一个字节的时序 模拟接收应答的时序 模拟接收一个字节的时序 模拟发送应答的时序 模拟结束位置的时序 I2C.h AT24C02.c 字节写:在WORD ADDRESS(字地址ÿ…...
首次安装Mysql数据库
1、在mysql官网下载自己需要的版本 2、选择安装类型 3、 检查一下需求版本 4、 这里可能会弹出如下信息,先不用管这一步,点击Yes继续即可 5、 安装需要的环境,点击执行就可以,此过程会比较慢 如下就是全面安装完成了,点击next即可...
2024 前端面试题(GPT回答 + 示例代码 + 解释)No.1 - No.20
本文题目来源于全网收集,答案来源于 ChatGPT 和 博主(的小部分……) 格式:题目 h3 回答 text 参考大佬博客补充 text 示例代码 code 解释 quote 补充 quote 目录 No.1 - No.20 本文题目来源于全网收集,答案来源于…...
通过`ssh`同步`tmux`剪贴板内容
通过ssh同步tmux剪贴板内容 通过ssh连接远程服务器时,可以通过xclip同步tmux剪贴板内容。这需要在服务器上安装xclip,且需要在ssh远程连接时开启X11。 此处附tmux剪贴板调用xclip的配置: # Copy the current buffer to the system clipboa…...
HTTP 响应状态代码
HTTP 响应状态代码 HTTP 响应状态代码指示特定 HTTP 请求是否已成功完成。 响应分为五类: 信息性回复 ( 100 – 199)成功响应 ( 200 – 299)重定向消息 ( 300 – 399)客户端错误响应 ( 400 – 499)服务器错误…...
[OPEN SQL] 新增数据
INSERT语句用于数据的新增操作 本次操作使用的数据库表为SCUSTOM,其字段内容如下所示 航班用户(SCUSTOM) 该数据库表中的部分值如下所示 1.插入单条数据 语法格式 INSERT <dbtab> FROM <wa>. INSERT INTO <dbtab> VALUES <wa>. INSERT &…...
OpenHarmony—UIAbility组件生命周期
概述 当用户打开、切换和返回到对应应用时,应用中的UIAbility实例会在其生命周期的不同状态之间转换。UIAbility类提供了一系列回调,通过这些回调可以知道当前UIAbility实例的某个状态发生改变,会经过UIAbility实例的创建和销毁,…...
Mybatis的使用
MyBatis 是一个流行的 Java 持久层框架,它提供了 SQL 映射和对象关系映射的功能,让开发者能够更加便捷地操作数据库。MyBatis 通过 XML 或注解的方式配置 SQL 语句,并将 Java 对象与数据库表进行映射,以简化 JDBC 的复杂操作。以下…...
Python 播放音乐
本篇是使用Python pygame库来实现操作音乐。 安装pygame 播放音乐需要pygame库,如果没有可以进行安装。 命令如下: pip install pygame 引入类库 需要引入两个类库,即time和pygame。 示例如下: import time import pygame 播…...
[嵌入式系统-21]:RT-Thread -7- 内核组件编程接口 - 定时器
目录 一、RT-Thread定时器 1.1 概述 1.2 定时器的种类 1.2.1 周期性 1.2.2 实时性 1.2.3 功能 二、 RT-Thread 定时器的一般步骤 2.1 步骤 2.2 Flag 2.3 示例 一、RT-Thread定时器 1.1 概述 在 RT-Thread 中,定时器是一种常用的机制,用于在指…...
Python Matplotlib 的学习笔记
Python Matplotlib 的学习笔记 0. Python Matplotlib 简介1. 为什么要用 Matplotlib?2. Matplotlib 基础类详解2-1. Line(线)2-2. Marker(标记)2-3. Text(文本)2-4. Legend(图例&…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
