机器学习与深度学习
什么是机器学习
机器学习是一门跨学科的学科,它致力于研究和开发让计算机能够模拟人类学习行为的技术和方法。机器学习涉及多个学科的知识,如概率论、统计学、逼近论、凸分析、算法复杂度理论等,这些学科为机器学习提供了理论基础和数学工具。
机器学习的主要目标是通过对大量数据进行处理和分析,自动地发现数据中的规律和模式,然后利用这些规律和模式对新的数据进行预测和决策。这个过程不需要人类进行明确的编程和指令,而是让计算机通过学习和经验自我改进和优化。
在机器学习中,通常将数据分为训练数据和测试数据。训练数据用于训练模型,即构建出一个数学模型来拟合数据中的规律和模式;测试数据则用于评估模型的性能,即检验模型对新数据的预测和分类能力。通过对模型参数的不断调整和优化,可以提高模型的预测准确性和泛化能力。
机器学习算法是实现机器学习技术的核心。常见的机器学习算法包括线性回归、逻辑回归、决策树、支持向量机、神经网络等。这些算法各有特点,适用于不同的数据类型和问题场景。例如,线性回归适用于回归问题,即预测一个连续值;逻辑回归适用于分类问题,即预测一个离散值。
机器学习是人工智能的核心技术之一,它使得计算机能够具有类似人类的智能能力,能够自主地学习和适应新的任务和环境。机器学习的应用已经遍及人工智能的各个分支,如自然语言处理、计算机视觉、智能机器人等领域。随着数据量的不断增加和计算能力的不断提高,机器学习将在更多领域发挥重要作用,为人类带来更多便利和创新。
什么是深度学习
深度学习(Deep Learning)是机器学习领域中的一个新的研究方向,主要是通过学习样本数据的内在规律和表示层次,让机器能够具有类似于人类的分析学习能力。深度学习的最终目标是让机器能够识别和解释各种数据,如文字、图像和声音等,从而实现人工智能的目标。
深度学习的最具革命性的一点是,它利用神经网络技术自动提取数据的特征,而不需要人为进行特征工程。传统的机器学习算法通常需要人工设计和选择特征,这需要大量的经验和专业知识,并且对于不同的数据和问题,需要不同的特征选择方法。而深度学习可以通过神经网络的层层叠加,自动学习数据的多层特征表示,从而避免了繁琐的特征工程。
深度学习的另一个重要特点是,它利用大量的数据进行训练,通过反向传播算法不断优化神经网络的参数,使得模型能够学习到更加准确和复杂的表示。这使得深度学习模型在图像识别、语音识别、自然语言处理等领域取得了很大的成功,并且在很多应用中超越了传统的机器学习算法。
深度学习的应用非常广泛,包括计算机视觉、语音识别、自然语言处理、推荐系统、个性化搜索等。例如,在图像识别中,深度学习可以通过训练大量的图像数据,使得模型能够自动识别出图像中的物体、场景和情感等。在语音识别中,深度学习可以通过对语音信号的处理和分析,实现语音到文本的转换,从而提高了语音识别的准确性和效率。
区别
模型复杂度:机器学习通常使用的是传统的线性模型或非线性模型,如决策树、支持向量机等。而深度学习则构建了多层神经网络,网络中的神经元之间存在大量的连接和权重,模型的复杂度更高。
数据依赖:深度学习的性能在很大程度上依赖于大量的数据。当数据量很少时,深度学习的效果可能并不理想,因为它需要大量的数据来理解其中的模式。相比之下,机器学习在某些情况下对数据的依赖较少。
硬件支持:深度学习算法严重依赖高端硬件,特别是GPU,以进行大量的矩阵乘法运算。而传统的机器学习算法在低端机上就能运行。
特征工程:在机器学习中,特征工程是一个关键步骤,需要人工提取数据中的特征。而在深度学习中,特征提取是自动的,通过神经网络的逐层学习,减少了人工参与的过程。
训练速度和计算资源:由于深度学习模型的复杂度更高,其训练速度通常比机器学习慢,并需要更多的计算资源。
应用场景:机器学习在各个领域都有应用,如语音识别、图像标注、生物信息学等。而深度学习在计算机视觉、自然语言处理、语音识别等领域中表现出更好的效果。
相关文章:
机器学习与深度学习
什么是机器学习 机器学习是一门跨学科的学科,它致力于研究和开发让计算机能够模拟人类学习行为的技术和方法。机器学习涉及多个学科的知识,如概率论、统计学、逼近论、凸分析、算法复杂度理论等,这些学科为机器学习提供了理论基础和数学工具…...
算法训练营day27(补),贪心算法1
import "sort" //455. 分发饼干 func findContentChildren(g []int, s []int) int { sort.Ints(g) sort.Ints(s) // g代表胃口数组, s代表饼干数组 count : 0 // 统计数量 //饼干下标 index : len(s) - 1 // 胃口循环 for i : len(g) - 1; i > 0; i--…...
[office] excel2003限定单元格输入值范围教程 #微信#经验分享
excel2003限定单元格输入值范围教程 在Excel中录入数据前都会设置单元格的一些格式,其中会有限定单元格输入值范围的需求,或许有的朋友并不知道单元格该如何限定输入范围,如果不懂的朋友欢迎一起来学习研究。下面是小编带来的关于excel2003限…...
OLED显示红外遥控键码
基本原理 本遥控器的编码是NEC编码,为PWM(脉冲宽度调制)。 发射红外载波的时间固定,通过改变不发射载波的时间来改变占空比。 逻辑“0”是由0.56ms的38KHZ载波和0.560ms的无载波间隔组成;逻辑“1”是由0.56ms的38KHZ…...
LabVIEW智能温度监控系统
LabVIEW智能温度监控系统 介绍了一个基于LabVIEW的智能温度监控系统,实现对工业环境中温度的实时监控与调控。通过集成传感器技术和LabVIEW软件平台,系统能够自动检测环境温度,及时响应温度变化,并通过图形用户界面(GUI)为用户提…...
专业140+总分420+浙江大学842信号系统与数字电路考研经验电子信息与通信,真题,大纲,参考书。
今年考研已经结束,初试专业课842信号系统与数字电路140,总分420,很幸运实现了自己的目标,被浙大录取,这在高考是想都不敢想的学校,在考研时实现了,所以大家也要有信心,通过自己努力实…...
C语言学习day15:数组强化训练
题目一: 称体重:分别给10个值,来获得最大值 思路: 定义数组,给数组内赋10个值第一个下标的值与第二个下标的值进行比较定义max,将比较得来的较大的值赋值给max一直比较直到比较到最后一个下标࿰…...
缓存穿透、缓存击穿与缓存雪崩
缓存穿透、缓存击穿与缓存雪崩 1.本质区别 缓存穿透指的是数据库不存在数据,导致无法缓存,每次查询都查数据库,数据库压垮 缓存击穿指的是缓存键值对key过期了,key过期期间,大量请求访问,不经过缓存&…...
一周学会Django5 Python Web开发-项目配置settings.py文件-模版配置
锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计17条视频,包括:2024版 Django5 Python we…...
CF1845 D. Rating System [思维题+数形结合]
传送门:CF [前题提要]:自己在做这道题的时候思路完全想错方向,导致怎么做都做不出来,看了题解之后感觉数形结合的思考方式挺好的(或者这种做法挺典的),故写篇题解记录一下 题目很简单,不再解释.先不考虑 k k k,想想是一种什么情况?很显然应该是跟下图一样是一个折线图的变化.…...
HeidiSQL安装配置(基于小皮面板(phpstudy))连接MySQL
下载资源 对于这款图形化工具,博主建议通过小皮面板(phpstudy)来下载即可,也是防止你下载到钓鱼软件,小皮面板(phpstudy)如果你不懂是什么,请看下面链接这篇博客 第二篇:…...
【蓝桥2013】错误票据
错误票据 题目描述 某涉密单位下发了某种票据,并要在年终全部收回。 每张票据有唯一的 ID 号。全年所有票据的 ID 号是连续的,但 ID 的开始数码是随机选定的。 因为工作人员疏忽,在录入 ID 号的时候发生了一处错误,造成了某个…...
nvm对node版本进行管理及疑难解决,vue项目搭建与启动
一、nvm安装与node版本管理 nvm安装 1、nvm地址:https://github.com/coreybutler/nvm-windows/releases 2、无需配置安装包,nvm-setup-v1.1.10.zip 解压后双击nvm-setup.exe,选择安装路径,一路next即可 打开dos窗口输入nvm vers…...
Redisson分布式锁 原理 + 运用 记录
Redisson 分布式锁 简单入门 pom <dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.13.6</version></dependency>配置类 package com.hmdp.config;import org.redisson.Redisson;…...
Spring Boot 笔记 021 项目部署
1.1 引入坐标,并双击package打包成jar包 1.2 在服务器上运行jar包 1.3 使用postman测试 2.1 运行配置 2.1.1 命令更改端口 java -jar big-event-1.0-SNAPSHOT.jar --server.port7777 2.1.2 环境变量更新(略) 2.1.3 外部配置文件,…...
新技术革命开始了,Sora一出,所有的视频人、电影人都下岗
Sora一出,所有的视频人、电影人都下岗! Sora直接用文本制作长达60秒的视频长镜头,也就是说,将来,只需要输入分镜脚本,电影就可以制作出来,不再需要几十人几百人声势浩大地去“拍”了,…...
【FPGA开发】Modelsim和Vivado的使用
本篇文章包含的内容 一、FPGA工程文件结构二、Modelsim的使用三、Vivado的使用3.1 建立工程3.2 分析 RTL ANALYSIS3.2.1 .xdc约束(Constraints)文件的产生 3.3 综合 SYNTHESIS3.4 执行 IMPLEMENTATION3.5 烧录程序3.6 程序固化3.6.1 SPI约束3.6.2 .bin文…...
现代浏览器对 es模块 【esm】原生支持
现代浏览器对 ES(ECMAScript)模块的原生支持是指浏览器可以直接解析和执行 JavaScript 文件中的 ES 模块语法,无需额外的工具或转换。 具体来说,当浏览器遇到 import 和 export 关键字时,会将其识别为 ES 模块语法&…...
修改SpringBoot中默认依赖版本
例如SpringBoot2.7.2中ElasticSearch版本是7.17.4 我希望把它变成7.6.1...
网络安全最典型基础靶场-DVWA-本地搭建与初始化
写在前面: 之前也打过这个 DVWA 靶场,但是是在虚拟机环境下的一个小块分区靶场; 本篇博客主要介绍在本地搭建 DVWA 靶场以及靶场的初始化,后续会陆续更新通关教程。 由于我们是在本地搭建,则需要基于你已经装好 phpstu…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
