当前位置: 首页 > news >正文

openJudge | 距离排序 C语言

总时间限制: 1000ms 内存限制: 65536kB

描述

给出三维空间中的n个点(不超过10个),求出n个点两两之间的距离,并按距离由大到小依次输出两个点的坐标及它们之间的距离。

输入

输入包括两行,第一行包含一个整数n表示点的个数,第二行包含每个点的坐标(坐标都是整数)。点的坐标的范围是0到100,输入数据中不存在坐标相同的点。

输出

对于大小为n的输入数据,输出n*(n-1)/2行格式如下的距离信息:
(x1,y1,z1)-(x2,y2,z2)=距离
其中距离保留到数点后面2位。
(用cout输出时保留到小数点后2位的方法:cout<

样例输入

4
0 0 0 1 0 0 1 1 0 1 1 1

样例输出

(0,0,0)-(1,1,1)=1.73
(0,0,0)-(1,1,0)=1.41
(1,0,0)-(1,1,1)=1.41
(0,0,0)-(1,0,0)=1.00
(1,0,0)-(1,1,0)=1.00
(1,1,0)-(1,1,1)=1.00

提示

用cout输出时保留到小数点后2位的方法:cout<<fixed<<setprecision(2)<<x

注意:

冒泡排序满足下面的性质,选择排序和快速排序(qsort或sort)需要对下面的情况进行额外处理
使用冒泡排序时要注意边界情况的处理,保证比较的两个数都在数组范围内

  1. 对于一行输出中的两个点(x1,y1,z1)和(x2,y2,z2),点(x1,y1,z1)在输入数据中应出现在点(x2,y2,z2)的前面。

比如输入:

2
0 0 0 1 1 1

输出是:

(0,0,0)-(1,1,1)=1.73

但是如果输入:

2
1 1 1 0 0 0

输出应该是:

(1,1,1)-(0,0,0)=1.73
  1. 如果有两对点p1,p2和p3,p4的距离相同,则先输出在输入数据中靠前的点对。

比如输入:

3
0 0 0 0 0 1 0 0 2

输出是:

(0,0,0)-(0,0,2)=2.00
(0,0,0)-(0,0,1)=1.00
(0,0,1)-(0,0,2)=1.00

如果输入变成:

3
0 0 2 0 0 1 0 0 0

则输出应该是:

(0,0,2)-(0,0,0)=2.00
(0,0,2)-(0,0,1)=1.00
(0,0,1)-(0,0,0)=1.00

答案

#include <stdio.h>
#include <math.h>
typedef struct {int start[3];int end[3];double dis;int weight;
} points;
int main() {static int n, p=0;static int a[10][4];static points point[1024], t;scanf("%d", &n);for(int i = 0; i < n; i++) {scanf("%d %d %d", &a[i][0], &a[i][1], &a[i][2]);}for(int i = 0; i < n; i++) {for(int j = i+1; j < n; j++) {point[p].start[0] = a[i][0];point[p].start[1] = a[i][1];point[p].start[2] = a[i][2];point[p].end[0] = a[j][0];point[p].end[1] = a[j][1];point[p].end[2] = a[j][2];point[p].dis = sqrt((a[i][0]-a[j][0])*(a[i][0]-a[j][0])+(a[i][1]-a[j][1])*(a[i][1]-a[j][1])+(a[i][2]-a[j][2])*(a[i][2]-a[j][2]));point[p].weight = p;p++;}}for(int i = 0; i < p; i++) {for(int j = i+1; j < p; j++) {if(point[i].dis < point[j].dis) {t = point[i];point[i] = point[j];point[j] = t;} else if(point[i].dis == point[j].dis) {if(point[i].weight > point[j].weight) {t = point[i];point[i] = point[j];point[j] = t;}}}}for(int i = 0; i < p; i++) {printf("(%d,%d,%d)-(%d,%d,%d)=%.2f\n", point[i].start[0], point[i].start[1], point[i].start[2], point[i].end[0], point[i].end[1], point[i].end[2], point[i].dis);}
}

至于weight,它的作用,就只是增加一个权重罢了。

相关文章:

openJudge | 距离排序 C语言

总时间限制: 1000ms 内存限制: 65536kB 描述 给出三维空间中的n个点&#xff08;不超过10个&#xff09;,求出n个点两两之间的距离,并按距离由大到小依次输出两个点的坐标及它们之间的距离。 输入 输入包括两行&#xff0c;第一行包含一个整数n表示点的个数&#xff0c;第二…...

【教程】MySQL数据库学习笔记(三)——数据定义语言DDL(持续更新)

写在前面&#xff1a; 如果文章对你有帮助&#xff0c;记得点赞关注加收藏一波&#xff0c;利于以后需要的时候复习&#xff0c;多谢支持&#xff01; 【MySQL数据库学习】系列文章 第一章 《认识与环境搭建》 第二章 《数据类型》 第三章 《数据定义语言DDL》 文章目录 【MyS…...

[leetcode]买卖股票的最佳时机 (动态规划)

121. 买卖股票的最佳时机 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从…...

隐函数的求导【高数笔记】

1. 什么是隐函数&#xff1f; 2. 隐函数的做题步骤&#xff1f; 3. 隐函数中的复合函数求解法&#xff0c;与求导中复合函数求解法有什么不同&#xff1f; 4. 隐函数求导的过程中需要注意什么&#xff1f;...

SG3225EEN晶体振荡器规格书

SG3225EEN 晶振是EPSON/爱普生的一款额定频率25 MHz至500 MHz的石英晶体振荡器&#xff0c;6脚贴片&#xff0c;LV-PECL输出&#xff0c;3225封装常规有源晶振&#xff0c;具有小尺寸&#xff0c;轻薄型&#xff0c;高稳定性&#xff0c;低相位抖动&#xff0c;低电源电压&…...

ESP8266 常用AT指令

一、ESP8266的AT指令要点、常见错误 AT指令要大写;以"\r\n"作结尾;串口通信&#xff0c;115200-None-8-1;支持2.4G频段&#xff0c;不支持5G频段 &#xff08;如果用手机创建热点&#xff0c;注意选择2.4G&#xff09;不支持中文的wifi名称工作模式&#xff0c;上电…...

esbuild 构建工具为什么很快?

esbuild 构建工具之所以很快&#xff0c;主要有以下几个原因&#xff1a; Go语言编写&#xff1a;esbuild 是用 Go 语言编写的&#xff0c;Go 语言以其高效的并发模型和编译速度而闻名。与一些其他构建工具相比&#xff0c;Go 语言在并发处理和内存管理方面表现出色&#xff0c…...

解决vscode报错,在赋值前使用了变量“XXX“

问题&#xff1a;如图所示 解决方法&#xff1a; 法一&#xff1a; 补全函数使其完整 法二&#xff1a; 使用断言...

python自动定时任务schedule库的使用方法

当你需要在 Python 中定期执行任务时&#xff0c;schedule 库是一个非常实用的工具。它可以帮助你自动化定时任务。以下是一些使用示例&#xff1a; 基本使用&#xff1a; import schedule import timedef job():print("Im working...")schedule.every(10).minutes.d…...

用机器学习方法重构期货商品板块

用机器学习方法重构期货商品板块 阿岛格 参考专栏:低门槛搭建个人量化平台 https://www.zhihu.com/column/c_1441014235068944386 摘 要 金融市场商品期货的板块分类,通常根据不同交易所、监管机构和证券商标准,按照期货标的属性、或产业链关系等进行分类,各自分类略有差…...

51单片机项目(29)——基于51单片机的避障跟随小车

1.功能设计 按键模式&#xff1a;按下按键&#xff0c;小车可以前后左右地运动 自动模式&#xff1a;根据红外传感器的状态&#xff0c;自行决定运动状态。检测到前方有物体时&#xff0c;车子移动&#xff0c;起到一个跟随的效果。 演示视频如下&#xff1a; 51单片机智能避障…...

人工智能学习与实训笔记(六):百度飞桨套件使用方法

目录 八、百度飞桨套件使用 8.1 飞桨预训练模型套件PaddleHub 8.1.1 一些本机CPU可运行的飞桨预训练简单模型&#xff08;亲测可用&#xff09; 8.1.1.1 人脸检测模型 8.1.1.2 中文分词模型 8.1.2 预训练模型Fine-tune 8.2 飞桨开发套件 8.2.1 PaddleSeg - 图像分割 8…...

Linux第一个小程序-进度条

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 一、回车和换行 二、行缓冲区概念 三、倒计时 四、进度条代码 版本一&#xff1a; ​编辑 版本二&#xff1a; 总结 前言 世上有两种耀眼的光芒&#xff0c;一…...

YoloV8改进策略:Block改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

摘要 本文尝试使用Mamba的VSSBlock替换YoloV8的Bottleneck,打造最新的Yolo-Mamba网络。 论文:《Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络》 在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积…...

数据分析基础之《pandas(8)—综合案例》

一、需求 1、现在我们有一组从2006年到2016年1000部最流行的电影数据 数据来源&#xff1a;https://www.kaggle.com/damianpanek/sunday-eda/data 2、问题1 想知道这些电影数据中评分的平均分&#xff0c;导演的人数等信息&#xff0c;我们应该怎么获取&#xff1f; 3、问题…...

(17)Hive ——MR任务的map与reduce个数由什么决定?

一、MapTask的数量由什么决定&#xff1f; MapTask的数量由以下参数决定 文件个数文件大小blocksize 一般而言&#xff0c;对于每一个输入的文件会有一个map split&#xff0c;每一个分片会开启一个map任务&#xff0c;很容易导致小文件问题&#xff08;如果不进行小文件合并&…...

define和typedef

目录 一、define 二、typedef 三、二者之间的区别 一、define 在我们写代码的日常中&#xff0c;经常会用到define去配合数组的定义使用 #define N 10 arr[N]{0}; define不仅仅能做这些 #define是一种宏&#xff0c;我们首先来了解一下宏定义。 宏定义一般作用在C语言的预…...

SpringCloud之Nacos用法笔记

SpringCloud之Nacos注册中心 Nacos注册中心nacos启动服务注册到Nacosnacos服务分级模型NacosRule负载均衡策略根据集群负载均衡加权负载均衡Nacos环境隔离-namespace Nacos与eureka的对比临时实例与非临时实例设置 Nacos配置管理统一配置管理微服务配置拉取配置自动刷新远端配置…...

【c++】拷贝构造函数

1.特征 1.拷贝构造函数是构造函数的一个重载形式。 2.若显示定义了拷贝构造函数&#xff0c;编译器就不会自动生成构造函数了。 3.拷贝构造函数的参数只有一个且必须是类型对象的引用&#xff0c;使用传值方式编译器直接报错&#xff0c;因为会引发无穷递归调用。 4.若未显…...

17.3.1.2 曝光

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 基本算法&#xff1a;先定义一个阈值&#xff0c;通常取得是128 原图像&#xff1a;颜色值color&#xff08;R&#xff0c;G&#…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...