当前位置: 首页 > news >正文

openJudge | 距离排序 C语言

总时间限制: 1000ms 内存限制: 65536kB

描述

给出三维空间中的n个点(不超过10个),求出n个点两两之间的距离,并按距离由大到小依次输出两个点的坐标及它们之间的距离。

输入

输入包括两行,第一行包含一个整数n表示点的个数,第二行包含每个点的坐标(坐标都是整数)。点的坐标的范围是0到100,输入数据中不存在坐标相同的点。

输出

对于大小为n的输入数据,输出n*(n-1)/2行格式如下的距离信息:
(x1,y1,z1)-(x2,y2,z2)=距离
其中距离保留到数点后面2位。
(用cout输出时保留到小数点后2位的方法:cout<

样例输入

4
0 0 0 1 0 0 1 1 0 1 1 1

样例输出

(0,0,0)-(1,1,1)=1.73
(0,0,0)-(1,1,0)=1.41
(1,0,0)-(1,1,1)=1.41
(0,0,0)-(1,0,0)=1.00
(1,0,0)-(1,1,0)=1.00
(1,1,0)-(1,1,1)=1.00

提示

用cout输出时保留到小数点后2位的方法:cout<<fixed<<setprecision(2)<<x

注意:

冒泡排序满足下面的性质,选择排序和快速排序(qsort或sort)需要对下面的情况进行额外处理
使用冒泡排序时要注意边界情况的处理,保证比较的两个数都在数组范围内

  1. 对于一行输出中的两个点(x1,y1,z1)和(x2,y2,z2),点(x1,y1,z1)在输入数据中应出现在点(x2,y2,z2)的前面。

比如输入:

2
0 0 0 1 1 1

输出是:

(0,0,0)-(1,1,1)=1.73

但是如果输入:

2
1 1 1 0 0 0

输出应该是:

(1,1,1)-(0,0,0)=1.73
  1. 如果有两对点p1,p2和p3,p4的距离相同,则先输出在输入数据中靠前的点对。

比如输入:

3
0 0 0 0 0 1 0 0 2

输出是:

(0,0,0)-(0,0,2)=2.00
(0,0,0)-(0,0,1)=1.00
(0,0,1)-(0,0,2)=1.00

如果输入变成:

3
0 0 2 0 0 1 0 0 0

则输出应该是:

(0,0,2)-(0,0,0)=2.00
(0,0,2)-(0,0,1)=1.00
(0,0,1)-(0,0,0)=1.00

答案

#include <stdio.h>
#include <math.h>
typedef struct {int start[3];int end[3];double dis;int weight;
} points;
int main() {static int n, p=0;static int a[10][4];static points point[1024], t;scanf("%d", &n);for(int i = 0; i < n; i++) {scanf("%d %d %d", &a[i][0], &a[i][1], &a[i][2]);}for(int i = 0; i < n; i++) {for(int j = i+1; j < n; j++) {point[p].start[0] = a[i][0];point[p].start[1] = a[i][1];point[p].start[2] = a[i][2];point[p].end[0] = a[j][0];point[p].end[1] = a[j][1];point[p].end[2] = a[j][2];point[p].dis = sqrt((a[i][0]-a[j][0])*(a[i][0]-a[j][0])+(a[i][1]-a[j][1])*(a[i][1]-a[j][1])+(a[i][2]-a[j][2])*(a[i][2]-a[j][2]));point[p].weight = p;p++;}}for(int i = 0; i < p; i++) {for(int j = i+1; j < p; j++) {if(point[i].dis < point[j].dis) {t = point[i];point[i] = point[j];point[j] = t;} else if(point[i].dis == point[j].dis) {if(point[i].weight > point[j].weight) {t = point[i];point[i] = point[j];point[j] = t;}}}}for(int i = 0; i < p; i++) {printf("(%d,%d,%d)-(%d,%d,%d)=%.2f\n", point[i].start[0], point[i].start[1], point[i].start[2], point[i].end[0], point[i].end[1], point[i].end[2], point[i].dis);}
}

至于weight,它的作用,就只是增加一个权重罢了。

相关文章:

openJudge | 距离排序 C语言

总时间限制: 1000ms 内存限制: 65536kB 描述 给出三维空间中的n个点&#xff08;不超过10个&#xff09;,求出n个点两两之间的距离,并按距离由大到小依次输出两个点的坐标及它们之间的距离。 输入 输入包括两行&#xff0c;第一行包含一个整数n表示点的个数&#xff0c;第二…...

【教程】MySQL数据库学习笔记(三)——数据定义语言DDL(持续更新)

写在前面&#xff1a; 如果文章对你有帮助&#xff0c;记得点赞关注加收藏一波&#xff0c;利于以后需要的时候复习&#xff0c;多谢支持&#xff01; 【MySQL数据库学习】系列文章 第一章 《认识与环境搭建》 第二章 《数据类型》 第三章 《数据定义语言DDL》 文章目录 【MyS…...

[leetcode]买卖股票的最佳时机 (动态规划)

121. 买卖股票的最佳时机 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从…...

隐函数的求导【高数笔记】

1. 什么是隐函数&#xff1f; 2. 隐函数的做题步骤&#xff1f; 3. 隐函数中的复合函数求解法&#xff0c;与求导中复合函数求解法有什么不同&#xff1f; 4. 隐函数求导的过程中需要注意什么&#xff1f;...

SG3225EEN晶体振荡器规格书

SG3225EEN 晶振是EPSON/爱普生的一款额定频率25 MHz至500 MHz的石英晶体振荡器&#xff0c;6脚贴片&#xff0c;LV-PECL输出&#xff0c;3225封装常规有源晶振&#xff0c;具有小尺寸&#xff0c;轻薄型&#xff0c;高稳定性&#xff0c;低相位抖动&#xff0c;低电源电压&…...

ESP8266 常用AT指令

一、ESP8266的AT指令要点、常见错误 AT指令要大写;以"\r\n"作结尾;串口通信&#xff0c;115200-None-8-1;支持2.4G频段&#xff0c;不支持5G频段 &#xff08;如果用手机创建热点&#xff0c;注意选择2.4G&#xff09;不支持中文的wifi名称工作模式&#xff0c;上电…...

esbuild 构建工具为什么很快?

esbuild 构建工具之所以很快&#xff0c;主要有以下几个原因&#xff1a; Go语言编写&#xff1a;esbuild 是用 Go 语言编写的&#xff0c;Go 语言以其高效的并发模型和编译速度而闻名。与一些其他构建工具相比&#xff0c;Go 语言在并发处理和内存管理方面表现出色&#xff0c…...

解决vscode报错,在赋值前使用了变量“XXX“

问题&#xff1a;如图所示 解决方法&#xff1a; 法一&#xff1a; 补全函数使其完整 法二&#xff1a; 使用断言...

python自动定时任务schedule库的使用方法

当你需要在 Python 中定期执行任务时&#xff0c;schedule 库是一个非常实用的工具。它可以帮助你自动化定时任务。以下是一些使用示例&#xff1a; 基本使用&#xff1a; import schedule import timedef job():print("Im working...")schedule.every(10).minutes.d…...

用机器学习方法重构期货商品板块

用机器学习方法重构期货商品板块 阿岛格 参考专栏:低门槛搭建个人量化平台 https://www.zhihu.com/column/c_1441014235068944386 摘 要 金融市场商品期货的板块分类,通常根据不同交易所、监管机构和证券商标准,按照期货标的属性、或产业链关系等进行分类,各自分类略有差…...

51单片机项目(29)——基于51单片机的避障跟随小车

1.功能设计 按键模式&#xff1a;按下按键&#xff0c;小车可以前后左右地运动 自动模式&#xff1a;根据红外传感器的状态&#xff0c;自行决定运动状态。检测到前方有物体时&#xff0c;车子移动&#xff0c;起到一个跟随的效果。 演示视频如下&#xff1a; 51单片机智能避障…...

人工智能学习与实训笔记(六):百度飞桨套件使用方法

目录 八、百度飞桨套件使用 8.1 飞桨预训练模型套件PaddleHub 8.1.1 一些本机CPU可运行的飞桨预训练简单模型&#xff08;亲测可用&#xff09; 8.1.1.1 人脸检测模型 8.1.1.2 中文分词模型 8.1.2 预训练模型Fine-tune 8.2 飞桨开发套件 8.2.1 PaddleSeg - 图像分割 8…...

Linux第一个小程序-进度条

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 一、回车和换行 二、行缓冲区概念 三、倒计时 四、进度条代码 版本一&#xff1a; ​编辑 版本二&#xff1a; 总结 前言 世上有两种耀眼的光芒&#xff0c;一…...

YoloV8改进策略:Block改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

摘要 本文尝试使用Mamba的VSSBlock替换YoloV8的Bottleneck,打造最新的Yolo-Mamba网络。 论文:《Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络》 在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积…...

数据分析基础之《pandas(8)—综合案例》

一、需求 1、现在我们有一组从2006年到2016年1000部最流行的电影数据 数据来源&#xff1a;https://www.kaggle.com/damianpanek/sunday-eda/data 2、问题1 想知道这些电影数据中评分的平均分&#xff0c;导演的人数等信息&#xff0c;我们应该怎么获取&#xff1f; 3、问题…...

(17)Hive ——MR任务的map与reduce个数由什么决定?

一、MapTask的数量由什么决定&#xff1f; MapTask的数量由以下参数决定 文件个数文件大小blocksize 一般而言&#xff0c;对于每一个输入的文件会有一个map split&#xff0c;每一个分片会开启一个map任务&#xff0c;很容易导致小文件问题&#xff08;如果不进行小文件合并&…...

define和typedef

目录 一、define 二、typedef 三、二者之间的区别 一、define 在我们写代码的日常中&#xff0c;经常会用到define去配合数组的定义使用 #define N 10 arr[N]{0}; define不仅仅能做这些 #define是一种宏&#xff0c;我们首先来了解一下宏定义。 宏定义一般作用在C语言的预…...

SpringCloud之Nacos用法笔记

SpringCloud之Nacos注册中心 Nacos注册中心nacos启动服务注册到Nacosnacos服务分级模型NacosRule负载均衡策略根据集群负载均衡加权负载均衡Nacos环境隔离-namespace Nacos与eureka的对比临时实例与非临时实例设置 Nacos配置管理统一配置管理微服务配置拉取配置自动刷新远端配置…...

【c++】拷贝构造函数

1.特征 1.拷贝构造函数是构造函数的一个重载形式。 2.若显示定义了拷贝构造函数&#xff0c;编译器就不会自动生成构造函数了。 3.拷贝构造函数的参数只有一个且必须是类型对象的引用&#xff0c;使用传值方式编译器直接报错&#xff0c;因为会引发无穷递归调用。 4.若未显…...

17.3.1.2 曝光

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 基本算法&#xff1a;先定义一个阈值&#xff0c;通常取得是128 原图像&#xff1a;颜色值color&#xff08;R&#xff0c;G&#…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...