当前位置: 首页 > news >正文

解线性方程组(二)——Jacobi迭代法求解(C++)

迭代法

相比于直接法求解,迭代法使用多次迭代来逐渐逼近解,其精度比不上直接法,但是其速度会比直接法快很多,计算精度可控,特别适用于求解系数矩阵为大型稀疏矩阵的方程组。

Jacobi迭代法

假设有方程组如下:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\\ \cdots \qquad \qquad\cdots \qquad \qquad \cdots \\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n\\ \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn
将其转换为矩阵形式
A x ⃗ = b ⃗ A\vec{x}=\vec{b} Ax =b
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] [ x 1 x 2 ⋮ x n ] = [ b 1 b 2 ⋮ b n ] \begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\ \end{bmatrix} \begin{bmatrix} {x_{1}}\\ {x_{2}}\\ {\vdots}\\ {x_{n}}\\ \end{bmatrix}= \begin{bmatrix} {b_{1}}\\ {b_{2}}\\ {\vdots}\\ {b_n} \end{bmatrix} a11a21am1a12a22am2a1na2namn x1x2xn = b1b2bn
对于是否可以使用Jacobi迭代法,需要满足以下条件之一:

  1. A为行对角优阵,即 ∣ a i i ∣ > ∑ j ≠ i ∣ a i j ∣ ( i = 1 , 2 , ⋯ , n ) |a_{ii}|>\sum_{j \neq i}|a_{ij}|(i=1,2,\cdots,n) aii>j=iaij(i=1,2,,n)
  2. A为行列角优阵,即 ∣ a j j ∣ > ∑ j ≠ i ∣ a i j ∣ ( j = 1 , 2 , ⋯ , n ) |a_{jj}|>\sum_{j \neq i}|a_{ij}|(j=1,2,\cdots,n) ajj>j=iaij(j=1,2,,n)
  3. A的元素满足 ∑ i ≠ j ∣ a i j ∣ ∣ a i i ∣ < 1 ( j , 1 , 2 , ⋯ , n ) \sum_{i \neq j}\frac{|a_{ij}|}{|aii|}<1(j,1,2,\cdots,n) i=jaiiaij<1(j,1,2,,n)
    若矩阵A满足上述条件之一,则可以使用Jacobi迭代法求解方程组。
    首先将上述的方程组转为如下形式:
    { x 1 = 1 a 11 ( − a 12 x 2 − ⋯ − a 1 n x n + b 1 ) x 2 = 1 a 22 ( − a 21 x 1 − ⋯ − a 2 n x n + b 2 ) ⋯ ⋯ ⋯ x n = 1 a n n ( − a n 1 x 1 − ⋯ − a n n − 1 x n − 1 + b n ) \begin{cases} x_1=\frac{1}{a_{11}}(-a_{12}x_2-\cdots -a_{1n}x_n+b_1)\\ x_2=\frac{1}{a_{22}}(-a_{21}x_1-\cdots -a_{2n}x_n+b_2)\\ \cdots \qquad \qquad\cdots \qquad \qquad \cdots \\ x_n=\frac{1}{a_{nn}}(-a_{n1}x_1-\cdots -a_{nn-1}x_{n-1}+b_n)\\ \end{cases} x1=a111(a12x2a1nxn+b1)x2=a221(a21x1a2nxn+b2)xn=ann1(an1x1ann1xn1+bn)
    写成矩阵形式可以得到Jacobi迭代式:
    ( D + L + u ) x ⃗ = b ⃗ D x ⃗ = − ( L + U ) x ⃗ + b ⃗ x ⃗ ( k + 1 ) = − D − 1 ( L + U ) x ⃗ ( k ) + D − 1 b ⃗ (D+L+u)\vec{x}=\vec{b}\\ D\vec{x}=-(L+U)\vec{x}+\vec{b}\\ \vec{x}^{(k+1)}=-D^{-1}(L+U)\vec{x}^{(k)}+D^{-1}\vec{b} (D+L+u)x =b Dx =(L+U)x +b x (k+1)=D1(L+U)x (k)+D1b
    其中 D D D为对角矩阵, L L L为下三角矩阵- D D D U U U为上三角矩阵- U U U D + L + U D+L+U D+L+U为矩阵A。
    在这里插入图片描述

代码实现

由于这个过程涉及大量的矩阵操作,整个算法分为两个源文件:Matrix.cpp实现矩阵操作,main.cpp实现Jacobi迭代法。
首先是Matrix.cpp的代码,其中矩阵求逆的原理参考:

#include <Matrix.h>
#include <iostream>
#include <cmath>
//矩阵与向量相乘,输入矩阵A,向量b,运算结果result和维数n
void matrix_multiply_vector(double **A,double *b,double * result,int n)
{for(int i=0;i<n;i++){result[i]=0.0;for(int j=0;j<n;j++){result[i]+=A[i][j]*b[j];}}
}
//矩阵乘法
void matrix_multiply_matrix(double **A,double **B,double **result,int n)
{for(int i=0;i<n;i++){for(int j=0;j<n;j++){result[i][j]=0.0;for(int k=0;k<n;k++){result[i][j]+=A[i][k]*B[k][j];}}}
}
//矩阵加减法
void matrix_add_matrix(double **A,double **B,double **result,int n,bool isAdd)
{for(int i=0;i<n;i++){for(int j=0;j<n;j++){if(isAdd){result[i][j]=A[i][j]+B[i][j];}else{result[i][j]=A[i][j]-B[i][j];}}}
}
//向量的加减法
void vactor_add_vector(double *A,double *B,double *result,int n,bool isAdd)
{for(int i=0;i<n;i++){if(isAdd){result[i]=A[i]+B[i];}else{result[i]=A[i]-B[i];}}
}
//判断向量误差范围,只要符合精度即可
bool vector_equal(double *A,double *B,int n,double error)
{for(int i=0;i<n;i++){if(fabs(A[i]-B[i])>error){return false;}}return true;
}
//向量赋值
void vector_copy(double *A,double *B,int n)
{for(int i=0;i<n;i++){B[i]=A[i];}
}
//矩阵初始化
void matrix_init(double **A,int n)
{for(int i=0;i<n;i++){A[i]=new double [n];for(int j=0;j<n;j++){A[i][j]=0.0;}}
}
//判断矩阵A是否有收敛性
bool astringency(double **A,int n)
{double abs_row_sum=0.0;double abs_col_sum=0.0;double the_third_condition=0.0;bool RowOptimalMatrix=true;bool ColOptimalMatrix=true;for(int i=0;i<n;i++)//判断是不是行对角优阵{abs_row_sum=0.0;for(int j=0;j<n;j++){if(i!=j){abs_row_sum+=fabs(A[i][j]);}}if(abs_row_sum>A[i][i])//证明不是行对角优阵{RowOptimalMatrix=false;break;}}for(int j=0;j<n;j++)//判断是不是列对角优阵{abs_col_sum=0.0;for(int i=0;i<n;i++){if(i!=j){abs_col_sum+=fabs(A[i][j]);}}if(abs_col_sum>A[j][j]){ColOptimalMatrix=false;break;}}return ColOptimalMatrix or RowOptimalMatrix;
}
//矩阵交换某两行
void matrix_swap_row(double **A,int i,int j,int n)
{double temp;for(int k=0;k<n;k++){temp=A[i][k];A[i][k]=A[j][k];A[j][k]=temp;}
}
//矩阵第i行=矩阵第i行-矩阵第j行*a
void matrix_minus_inner(double **A,double a,int i,int j,int n)
{for(int k=0;k<n;k++){A[i][k]-=a*A[j][k];}
}
//矩阵求逆
void matrix_inverse(double **A,double **A_inverse,int n)
{double **A_E=new double*[2*n];//构建增广矩阵for(int i=0;i<n;i++){A_E[i]=new double [n*2];for(int j=0;j<n*2;j++){if(j<n){A_E[i][j]=A[i][j];}else if((j-n)==i){A_E[i][j]=1;}else{A_E[i][j]=0;}}}//首先将矩阵化为上三角矩阵for(int i=0;i<n;i++){if(A_E[i][i]==0){for(int k=i+1;k<n;k++){if(A_E[k][i]!=0){matrix_swap_row(A_E,i,k,n*2);break;}}}for(int j=i+1;j<n;j++){matrix_minus_inner(A_E,A_E[j][i]/A_E[i][i],j,i,2*n);}}//判断矩阵是否可逆for(int i=0;i<n;i++){if(A_E[i][i]==0){std::cout<<"矩阵不可逆"<<std::endl;exit(0);}}//将上三角转换为对角矩阵for(int j=1;j<n;j++){for(int i=0;i<j;i++){matrix_minus_inner(A_E,A_E[i][j]/A_E[j][j],i,j,2*n);}}for(int i=0;i<n;i++){for(int j=n;j<2*n;j++){A_inverse[i][j-n]=A_E[i][j]/A_E[i][i];}}
}

main.cpp文件内容如下:

//Jacobi迭代法求解线性方程组
/*
5x1+2x2-2x3=1
x1+4x2+x3=2
x1-2x2+4x3=-1
*/
#include<iostream>
#include<cmath>
#include<Matrix.h>//自定义头文件
using namespace std;
int main()
{int n;cout<<"Enter the matrix dimension A: ";cin>>n;//输入数组维度double **A=new double *[n];cout<<"Enter the coefficient matrix:"<<endl;for(int i=0;i<n;i++){A[i]=new double[n];for(int j=0;j<n;j++){cin>>A[i][j];//每次输入一个数字都用空格隔开,输入样例//1 2 3\enter//4 5 6\enter//7 8 9\enter}}double *b=new double[n];cout<<"Input vectors b: ";for(int i=0;i<n;i++){cin>>b[i];//输入方程组右边的向量,1 2 3\enter}bool isAstringency=astringency(A,n);//判断系数矩阵A是否具有收敛性if(isAstringency){cout<<"矩阵A符合收敛性"<<endl;}else{exit(0);cout<<"矩阵A不符合收敛性"<<endl;}double *x=new double[n];//解向量Xdouble *x_last=new double[n];//上一次的xfor(int i=0;i<n;i++){x[i]=0.0;//初始化x}double **A_L_U=new double*[n];//L+Udouble **A_D_inverse=new double*[n];//D的逆for(int i=0;i<n;i++){A_D_inverse[i]=new double [n];A_L_U[i]=new double [n];for(int j=0;j<n;j++){if(i==j){A_L_U[i][j]=0.0;A_D_inverse[i][j]=1.0/A[i][j];//对角矩阵的逆为其倒数}else{A_L_U[i][j]=A[i][j];A_D_inverse[i][j]=0.0;}}}double **B=new double *[n];//公式前半段的矩阵matrix_init(B,n);matrix_multiply_matrix(A_D_inverse,A_L_U,B,n);//求D^(-1)(L+U)double *f=new double[n];matrix_multiply_vector(A_D_inverse,b,f,n);//求取D^-1 * bdouble *temp1=new double[n];do{vector_copy(x,x_last,n);matrix_multiply_vector(B,x_last,temp1,n);//计算公式前半段vactor_add_vector(f,temp1,x,n,false);}while(vector_equal(x,x_last,n,1e-6)==false);//判断向量在误差范围内相等cout<<"运行结果为:"<<endl;for(int i=0;i<n;i++){cout<<x[i]<<" ";}system("pause");return 0;
}

结果分析

代码运行结果如下:
在这里插入图片描述

当下一次的迭代结果与上一次的迭代结果的最大相差值小于1e-6时,认为迭代已经收敛,输出结果即可(当然也可以换成其它结束迭代方法,如:判断两个向量之差的二范数)。
与直接使用克拉默法则计算准确的解以及matlab计算结果比较,不难发现其 x 1 x_1 x1 x 3 x_3 x3均不为0,只是是一个在我们设定的误差范围内接近0的数,符合迭代法的解的性质,只能在设定的误差范围内得到一个近似的解。

相关文章:

解线性方程组(二)——Jacobi迭代法求解(C++)

迭代法 相比于直接法求解&#xff0c;迭代法使用多次迭代来逐渐逼近解&#xff0c;其精度比不上直接法&#xff0c;但是其速度会比直接法快很多&#xff0c;计算精度可控&#xff0c;特别适用于求解系数矩阵为大型稀疏矩阵的方程组。 Jacobi迭代法 假设有方程组如下&#xf…...

信息安全技术基础知识

一、考点分布 信息安全基础&#xff08;※※&#xff09;信息加密解密技术&#xff08;※※※&#xff09;密钥管理技术&#xff08;※※&#xff09;访问控制及数字签名技术&#xff08;※※※&#xff09;信息安全的保障体系 二、信息安全基础 信息安全包括5个基本要素&#…...

使用Taro开发鸿蒙原生应用——快速上手,鸿蒙应用开发指南

导读 本指南为开发者提供了使用 Taro 框架开发鸿蒙原生应用的快速入门方法。Taro&#xff0c;作为一个多端统一开发框架&#xff0c;让开发者能够使用一套代码同时适配多个平台&#xff0c;包括鸿蒙系统。文章将详细介绍如何配置开发环境&#xff0c;以及如何利用 Taro 的特性…...

C语言指针(初阶)

文章目录 1:内存与地址1.1内存1.2:如何理解编址 2:指针变量与地址2.1:指针变量与解引用操作符2.1.1:指针变量2.1.2:如何拆解指针类型2.1.3:解引用操作符 2.2:指针变量的大小 3:指针变量类型的意义代码1解引用修改前解引用修改后 代码2解引用修改前解引用修改后 4:const修饰指针…...

Python循环语句——for循环的嵌套使用

一、引言 在Python编程中&#xff0c;循环是控制程序流程的重要工具&#xff0c;它允许我们重复执行某段代码&#xff0c;直到满足特定的条件为止。其中&#xff0c;for循环是Python中最常用的循环类型之一。而嵌套循环&#xff0c;即在一个循环内部再嵌套另一个循环&#xff…...

Java创建线程真的有三种方式吗?

(/≧▽≦)/~┴┴ 嗨~我叫小奥 ✨✨✨ &#x1f440;&#x1f440;&#x1f440; 个人博客&#xff1a;小奥的博客 &#x1f44d;&#x1f44d;&#x1f44d;&#xff1a;个人CSDN ⭐️⭐️⭐️&#xff1a;传送门 &#x1f379; 本人24应届生一枚&#xff0c;技术和水平有限&am…...

17-k8s控制器资源-job控制

job控制器&#xff1a;就是一次性任务的pod控制器&#xff0c;pod完成作业后不会重启&#xff0c;其重启策略是&#xff1a;Never 1&#xff0c;job控制器案例描述 启动一个pod&#xff0c;执行完成一个事件&#xff0c;然后pod关闭&#xff1b; 事件&#xff1a;计算π的值&a…...

lazarus:LCL 嵌入 fpwebview 组件,做一个简单浏览器

从 https://github.com/PierceNg/fpwebview 下载 fpwebview-master.zip 简单易用。 先请看 \fpwebview-master\README.md cd \lazarus\projects\fpwebview-master\demo\lclembed 修改 lclembed.lpr 如下&#xff0c;将 fphttpapp. 注释掉&#xff0c;因为我用不上 a simple…...

c++类和对象新手保姆级上手教学(上)

前言&#xff1a; c其实顾名思义就是c语言的升级版&#xff0c;很多刚学c的同学第一感觉就是比c语言难学很多&#xff0c;其实没错&#xff0c;c里的知识更加难以理解可以说杂且抽象&#xff0c;光是类和对象&#xff0c;看起来容易&#xff0c;但想完全吃透&#xff0c;真的挺…...

可变参数(c/c++)

目录 一、C语言版本 二、C的实现方法 2.1数据包 2.2sizeof...运算符 2.3可变参数模板的使用 2.4emplace_back() 有时候我们在编写函数时&#xff0c;可能不知道要传入的参数个数&#xff0c;类型 。比如我们要实现一个叠加函数&#xff0c;再比如c语言中的printf,c中的emp…...

【数据结构】图

文章目录 图1.图的两种存储结构2.图的两种遍历方式3.最小生成树的两种算法&#xff08;无向连通图一定有最小生成树&#xff09;4.单源最短路径的两种算法5.多源最短路径 图 1.图的两种存储结构 1. 图这种数据结构相信大家都不陌生&#xff0c;实际上图就是另一种多叉树&…...

32.3K Star,再见 Postman,这款开源 API 客户端更香

Hi&#xff0c;骚年&#xff0c;我是大 G&#xff0c;公众号「GitHub指北」会推荐 GitHub 上有趣有用的项目&#xff0c;一分钟 get 一个优秀的开源项目&#xff0c;挖掘开源的价值&#xff0c;欢迎关注。 使用 API 工具来调试接口是后端开发经常会使用的&#xff0c;之前一直…...

Python循环语句——continue和break

一、引言 在Python编程中&#xff0c;循环是常见的控制流语句&#xff0c;它允许我们重复执行一段代码&#xff0c;直到满足某个条件为止。而在循环中&#xff0c;continue和break是两个非常重要的控制语句&#xff0c;它们可以帮助我们更加灵活地控制循环的行为。 二、contin…...

C++面向对象程序设计-北京大学-郭炜【课程笔记(三)】

C面向对象程序设计-北京大学-郭炜【课程笔记&#xff08;三&#xff09;】 1、构造函数&#xff08;constructor&#xff09;1.1、基本概念 2、赋值构造函数2.1、基本概念2.1、复制构造函数起作用的三种情况2.2、常引用参数的使用 3、类型转换构造函数3.1、什么事类型转换构造函…...

Linux:搭建docker私有仓库(registry)

当我们内部需要存储镜像时候&#xff0c;官方提供了registry搭建好直接用&#xff0c;废话少说直接操作 1.下载安装docker 在 Linux 上安装 Docker Desktop |Docker 文档https://docs.docker.com/desktop/install/linux-install/安装 Docker 引擎 |Docker 文档https://docs.do…...

用HTML、CSS和JS打造绚丽的雪花飘落效果

目录 一、程序代码 二、代码原理 三、运行效果 一、程序代码 <!DOCTYPE html> <html><head><meta http-equiv"Content-Type" content"text/html; charsetGBK"><style>* {margin: 0;padding: 0;}#box {width: 100vw;heig…...

订餐|网上订餐系统|基于springboot的网上订餐系统设计与实现(源码+数据库+文档)

网上订餐系统目录 目录 基于springboot的网上订餐系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户功能模块的实现 &#xff08;1&#xff09;用户注册界面 &#xff08;2&#xff09;用户登录界面 &#xff08;3&#xff09;菜品详情界面 &#xff08…...

从零开始学howtoheap:解题西湖论剑Storm_note

how2heap是由shellphish团队制作的堆利用教程&#xff0c;介绍了多种堆利用技术&#xff0c;后续系列实验我们就通过这个教程来学习。环境可参见从零开始配置pwn环境&#xff1a;从零开始配置pwn环境&#xff1a;从零开始配置pwn环境&#xff1a;优化pwn虚拟机配置支持libc等指…...

Rust 基本环境安装

rust 基本介绍请看上一篇文章&#xff1a;rust 介绍 rustup 介绍 rustup 是 Rust 语言的安装器和版本管理工具。通过 rustup&#xff0c;可以轻松地安装 Rust 编译器&#xff08;rustc&#xff09;、标准库和文档。它也允许你切换不同的 Rust 版本或目标平台&#xff0c;以及…...

【电源】POE系统供电原理(二)

转载本博客文章&#xff0c;请注明出处 ​ 上一篇文章中&#xff0c;有提到POE系统工作原理及动态检测机制&#xff0c;下面我们继续介绍受电端PD技术及原理。POE供电系统包含PSE、PD及互联接口部分组成&#xff0c;如下图所示。 图1 POE供电系统 PSE控制器的主要作用&#xff…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...