当前位置: 首页 > news >正文

pytorch神经网络入门代码

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms# 定义神经网络结构
class SimpleNN(nn.Module):def __init__(self, input_size, hidden_size, num_classes):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)self.relu = nn.ReLU()self.fc2 = nn.Linear(hidden_size, num_classes)def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 设置超参数
input_size = 784  # MNIST数据集的输入大小是28x28=784
hidden_size = 784
num_classes = 10learning_rate = 0.01
num_epochs = 10# 加载MNIST数据集
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())# 数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)# 实例化模型
model = SimpleNN(input_size, hidden_size, num_classes)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)# 训练模型
total_step = len(train_loader)
for epoch in range(num_epochs):for i, (images, labels) in enumerate(train_loader):# 将输入数据转换为一维向量images = images.reshape(-1, 28*28)# 前向传播outputs = model(images)loss = criterion(outputs, labels)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (i+1) % 100 == 0:print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))# 测试模型
with torch.no_grad():correct = 0total = 0for images, labels in test_loader:images = images.reshape(-1, 28*28)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))# 获取模型参数
params = model.parameters()# 打印每个参数的名称和值
for name, param in model.named_parameters():print(f'Parameter name: {name}')print(f'Parameter value: {param}')

以下代码测试正确率为:99.37%

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms# 定义适合MNIST数据集的CNN模型
class MNISTCNN(nn.Module):def __init__(self):super(MNISTCNN, self).__init__()# 卷积块 1self.conv_block1 = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2))# 卷积块 2self.conv_block2 = nn.Sequential(nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2))# 全连接层self.fc_layer = nn.Sequential(nn.Linear(64 * 7 * 7, 512),  # 假设经过前面的卷积和池化后特征图大小为7x7nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(512, 10)  # MNIST有10个类别)def forward(self, x):x = self.conv_block1(x)x = self.conv_block2(x)# 将卷积层输出展平为一维向量x = x.view(x.size(0), -1)# 通过全连接层x = self.fc_layer(x)return x# 创建模型实例
model = MNISTCNN()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 加载MNIST数据集并预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)# 使用DataLoader加载批量数据
batch_size = 64
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 开始训练
num_epochs = 10
for epoch in range(num_epochs):for inputs, labels in train_loader:# 前向传播outputs = model(inputs)loss = criterion(outputs, labels)# 反向传播和优化optimizer.zero_grad()  # 清空梯度缓存loss.backward()  # 计算梯度optimizer.step()  # 更新参数# 每个epoch结束时打印损失print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')# 测试模型
model.eval()  # 将模型切换到评估模式(禁用Dropout和BatchNorm等)
with torch.no_grad():correct = 0total = 0for images, labels in test_loader:outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Test Accuracy: {100 * correct / total}%')

相关文章:

pytorch神经网络入门代码

import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms# 定义神经网络结构 class SimpleNN(nn.Module):def __init__(self, input_size, hidden_size, num_classes):super(SimpleNN, self).__init_…...

代码随想录算法训练营第三十四天|860.柠檬水找零 406.根据身高重建队列 452. 用最少数量的箭引爆气球

860.柠檬水找零 链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 细节: 1. 首先根据题意就是只有5.的成本,然后就开始找钱,找钱也是10.和5. 2. 直接根据10 和 5 进行变量定义,然后去循环…...

Ditto:提升剪贴板体验的宝藏软件(复制粘贴效率翻倍、文本处理好助手)

名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 一、什么是Ditto?二、下载安装三、如…...

【自然语言处理-工具篇】spaCy<2>--模型的使用

前言 之前已经介绍了spaCy的安装,接下来我们要通过下载和加载模型去开始使用spaCy。 下载模型 经过训练的 spaCy 管道可以作为 Python 包安装。这意味着它们是应用程序的一个组件,就像任何其他模块一样。可以使用 spaCy download的命令安装模型,也可以通过将 pip 指向路径或…...

Java之通过Jsch库连接Linux实现文件传输

Java之通过JSch库连接Linux实现文件传输 文章目录 Java之通过JSch库连接Linux实现文件传输1. JSch2. Java通过Jsch连接Linux1. poxm.xml2. 工具类3. 调用案例 1. JSch 官网:JSch - Java Secure Channel (jcraft.com) JSch是SSH2的纯Java实现。 JSch 允许您连接到 ss…...

Nginx七层负载均衡之动静分离

思路: servera:负载均衡服务器 serverb:静态服务器 serverc:动态服务器 serverd:默认服务器 servera(192.168.233.132): # 安装 Nginx 服务器 yum install nginx -y#关闭防火墙和selinux systemctl stop firewalld setenforce 0# 切换到 Nginx 配置文…...

305_C++_定义了一个定时器池 TimerPool 类和相关的枚举类型和结构体

头文件:定义了一个定时器池 TimerPool 类和相关的枚举类型和结构体 #ifndef TIMERPOOL_H #define TIMERPOOL_H #include "rsglobal.h" #include "taskqueue.h" #incl...

大整数因数分解工具——yafu

一、安装 yafu--下载链接 二、配置环境变量,直接从cmd打开 1.找到yafu-x64.exe 所在的文件路径 2.点击设置——系统——系统信息——高级系统设置——环境变量——点击PATH(上下都可以)——新建 添加yafu-x64.exe 所在路径——点击确定 3…...

非关系型数据库(NOSQL)和关系型数据库(SQL)区别详解

前言: 在我们的日常开发中,关系型数据库和非关系型数据库的使用已经是一个成熟的软件产品开发过程中必不可却的存储数据的工具了。那么用了这么久的关系数据库和非关系型数据库你们都知道他们之间的区别了吗?下面我们来详细的介绍一下。 关系…...

7.Cloud-GateWay

0.概述 https://cloud.spring.io/spring-cloud-static/spring-cloud-gateway/2.2.1.RELEASE/reference/html/ 1.入门配置 1.1 POM <!--新增gateway--> <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-sta…...

【Linux】Framebuffer 应用

# 前置知识 LCD 操作原理 在 Linux 系统中通过 Framebuffer 驱动程序来控制 LCD。 Frame 是帧的意思&#xff0c; buffer 是缓冲的意思&#xff0c;这意味着 Framebuffer 就是一块内存&#xff0c;里面保存着一帧图像。 Framebuffer 中保存着一帧图像的每一个像素颜色值&…...

markdown绘制流程图相关代码片段记录

有时候会使用typora来绘制一些流程图&#xff0c;进行编码之类的工作&#xff0c;在网络搜集了一些笔记&#xff0c;做个记录&#xff0c;方便日后进行复习&#xff0c;相关的记录如下&#xff1a; 每次作图时&#xff0c;代码以「graph <布局方向>」开头&#xff0c;如…...

云计算基础-计算虚拟化-CPU虚拟化

CPU指令系统 在CPU的工作原理中&#xff0c;CPU有不同的指令集&#xff0c;如下图&#xff0c;CPU有4各指令集&#xff1a;Ring0-3&#xff0c;指令集是在服务器上运行的所有命令&#xff0c;最终都会在CPU上执行&#xff0c;但是CPU并不是说所有的命令都是一视同仁的&#xf…...

MySQL数据库⑪_C/C++连接MySQL_发送请求

目录 1. 下载库文件 2. 使用库 3. 链接MySQL函数 4. C/C链接示例 5. 发送SQL请求 6. 获取查询结果 本篇完。 1. 下载库文件 要使用C/C连接MySQL&#xff0c;需要使用MySQL官网提供的库。 进入MySQL官网选择适合自己平台的mysql connect库&#xff0c;然后点击下载就行…...

选择排序和快速排序(1)

目录 选择排序 基本思想 选择排序的实现 图片实现 代码实现 快速排序 基本思想 快速排序的实现 图片实现 代码实现 选择排序 基本思想 每一次从待排序的数据元素中选出最小&#xff08;最大&#xff09;的元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部…...

得物面试:Redis用哈希槽,而不是一致性哈希,为什么?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格&#xff0c;遇到很多很重要的面试题&#xff1a; Redis为何用哈希槽而不用一致性哈希&#xff1f; 最近…...

matlab发送串口数据,并进行串口数据头的添加,我们来看下pwm解析后并通过串口输出的效果

uintt16位的话会在上面前面加上00&#xff0c;16位的话一定是两个字节&#xff0c;一共16位的数据 如果是unint8的话就不会&#xff0c; 注意这里给的是13&#xff0c;但是现实的00 0D&#xff0c;这是大小端的问题&#xff0c;在matlanb里设置&#xff0c;我们就默认用这个模式…...

二分、快排、堆排与双指针

二分 int Binary_Search(vector<int> A,int key){int nA.size();int low0,highn-1,mid;while(low<high){mid(lowhigh)/2;if(A[mid]key)return mid;else if(A[mid]>key)highmid-1;elselowmid1; }return -1; }折半插入排序 ——找到第一个 ≥ \ge ≥tem的元素 voi…...

微信小程序步数返还的时间戳为什么返回的全是1970?

微信小程序步数返还的时间戳为什么返回的全是1970&#xff1f; 将返回的时间 乘以 1000 再 new Date() 转化就对了 微信返回的是秒S单位的&#xff0c;我们要转化为毫秒ms单位&#xff0c;才能进行格式化日期。 微信给我们下了个坑&#xff0c; 参考&#xff1a; https://d…...

Python函数——函数介绍

一、引言 在Python编程中&#xff0c;函数是构建高效代码的关键。通过创建可重用的代码块&#xff0c;我们可以使程序更加清晰、易读且易于维护。在本文中&#xff0c;我们将深入了解Python函数的基本概念及其特性。 二、Python函数的基本概念 函数是一段具有特定功能的代码块…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...