当前位置: 首页 > news >正文

非关系型数据库(NOSQL)和关系型数据库(SQL)区别详解

前言:

在我们的日常开发中,关系型数据库和非关系型数据库的使用已经是一个成熟的软件产品开发过程中必不可却的存储数据的工具了。那么用了这么久的关系数据库和非关系型数据库你们都知道他们之间的区别了吗?下面我们来详细的介绍一下。

关系型数据库(SQL):

什么是(SQL)关系型数据库:

关系型数据库(SQL)库指的是使用关系模型(二维表格模型)来组织数据的数据库,是一种使用结构化查询语言(Structured Query Language,简称SQL)进行数据管理和操作的数据库类型。它采用表格的形式来组织和存储数据,通过定义表之间的关系来建立数据之间的联系。

什么是关系模型:

关系模型可以简单理解为二维表格模型,而一个关系型数据库就是由二维表及其之间的关系组成的一个数据组织。

常见关系型数据库管理系统(ORDBMS):

  1. Oracle

  2. MySql

  3. Microsoft SQL Server

  4. SQLite

  5. PostgreSQL

  6. IBM DB2

关系型数据库的优势:

  1. 采用二维表结构非常贴近正常开发逻辑(关系型数据模型相对层次型数据模型和网状型数据模型等其他模型来说更容易理解);

  2. 支持通用的SQL(结构化查询语言)语句;

  3. 丰富的完整性大大减少了数据冗余和数据不一致的问题。并且全部由表结构组成,文件格式一致;

  4. 可以用SQL句子多个表之间做非常繁杂的查询;

  5. 关系型数据库提供对事务的支持,能保证系统中事务的正确执行,同时提供事务的恢复、回滚、并发控制和死锁问题的解决。

  6. 数据存储在磁盘中,安全可靠。

关系型数据库存在的不足:

随着互联网企业的不断发展,数据日益增多,因此关系型数据库面对海量的数据会存在很多的不足。

  1. 高并发读写能力差:网站类用户的并发性访问非常高,而一台数据库的最大连接数有限,且硬盘 I/O 有限,不能满足很多人同时连接。

  2. 海量数据情况下读写效率低:对大数据量的表进行读写操作时,需要等待较长的时间等待响应。

  3. 可扩展性不足:不像web server和app server那样简单的添加硬件和服务节点来拓展性能和负荷工作能力。

  4. 数据模型灵活度低:关系型数据库的数据模型定义严格,无法快速容纳新的数据类型(需要提前知道需要存储什么样类型的数据)。

非关系型数据库(NOSQL):

什么是(NOSQL)非关系型数据库:

非关系型数据库又被称为 NoSQL(Not Only SQL ),意为不仅仅是 SQL。指的是与传统关系型数据库(RDBMS)相对应的一类数据库管理系统。与关系型数据库不同的是非关系型数据库不使用传统的表格和行列结构来存储数据,而是采用更灵活的数据模型,例如键值对、文档、列族、图形等形式。

常见的NOSQL数据库:

  1. 键值数据库:Redis、Memcached、Riak

  2. 列族数据库:Bigtable、HBase、Cassandra

  3. 文档数据库:MongoDB、CouchDB、MarkLogic

  4. 图形数据库:Neo4j、InfoGrid

非关系型数据库的优势:

  1. 非关系型数据库存储数据的格式可以是 key-value 形式、文档形式、图片形式等。使用灵活,应用场景广泛,而关系型数据库则只支持基础类型。

  2. 速度快,效率高。 NoSQL 可以使用硬盘或者随机存储器作为载体,而关系型数据库只能使用硬盘。

  3. 海量数据的维护和处理非常轻松,成本低。

  4. 非关系型数据库具有扩展简单、高并发、高稳定性、成本低廉的优势。

  5. 可以实现数据的分布式处理。

非关系型数据库存在的不足:

  1. 非关系型数据库暂时不提供 SQL 支持,学习和使用成本较高。

  2. 非关系数据库没有事务处理,无法保证数据的完整性和安全性。适合处理海量数据,但是不一定安全。

  3. 功能没有关系型数据库完善。

  4. 复杂表关联查询不容易实现。

参考文章:

http://c.biancheng.net/view/6490.html

NoSQL_百度百科

关系数据库系统_百度百科

相关文章:

非关系型数据库(NOSQL)和关系型数据库(SQL)区别详解

前言: 在我们的日常开发中,关系型数据库和非关系型数据库的使用已经是一个成熟的软件产品开发过程中必不可却的存储数据的工具了。那么用了这么久的关系数据库和非关系型数据库你们都知道他们之间的区别了吗?下面我们来详细的介绍一下。 关系…...

7.Cloud-GateWay

0.概述 https://cloud.spring.io/spring-cloud-static/spring-cloud-gateway/2.2.1.RELEASE/reference/html/ 1.入门配置 1.1 POM <!--新增gateway--> <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-sta…...

【Linux】Framebuffer 应用

# 前置知识 LCD 操作原理 在 Linux 系统中通过 Framebuffer 驱动程序来控制 LCD。 Frame 是帧的意思&#xff0c; buffer 是缓冲的意思&#xff0c;这意味着 Framebuffer 就是一块内存&#xff0c;里面保存着一帧图像。 Framebuffer 中保存着一帧图像的每一个像素颜色值&…...

markdown绘制流程图相关代码片段记录

有时候会使用typora来绘制一些流程图&#xff0c;进行编码之类的工作&#xff0c;在网络搜集了一些笔记&#xff0c;做个记录&#xff0c;方便日后进行复习&#xff0c;相关的记录如下&#xff1a; 每次作图时&#xff0c;代码以「graph <布局方向>」开头&#xff0c;如…...

云计算基础-计算虚拟化-CPU虚拟化

CPU指令系统 在CPU的工作原理中&#xff0c;CPU有不同的指令集&#xff0c;如下图&#xff0c;CPU有4各指令集&#xff1a;Ring0-3&#xff0c;指令集是在服务器上运行的所有命令&#xff0c;最终都会在CPU上执行&#xff0c;但是CPU并不是说所有的命令都是一视同仁的&#xf…...

MySQL数据库⑪_C/C++连接MySQL_发送请求

目录 1. 下载库文件 2. 使用库 3. 链接MySQL函数 4. C/C链接示例 5. 发送SQL请求 6. 获取查询结果 本篇完。 1. 下载库文件 要使用C/C连接MySQL&#xff0c;需要使用MySQL官网提供的库。 进入MySQL官网选择适合自己平台的mysql connect库&#xff0c;然后点击下载就行…...

选择排序和快速排序(1)

目录 选择排序 基本思想 选择排序的实现 图片实现 代码实现 快速排序 基本思想 快速排序的实现 图片实现 代码实现 选择排序 基本思想 每一次从待排序的数据元素中选出最小&#xff08;最大&#xff09;的元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部…...

得物面试:Redis用哈希槽,而不是一致性哈希,为什么?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格&#xff0c;遇到很多很重要的面试题&#xff1a; Redis为何用哈希槽而不用一致性哈希&#xff1f; 最近…...

matlab发送串口数据,并进行串口数据头的添加,我们来看下pwm解析后并通过串口输出的效果

uintt16位的话会在上面前面加上00&#xff0c;16位的话一定是两个字节&#xff0c;一共16位的数据 如果是unint8的话就不会&#xff0c; 注意这里给的是13&#xff0c;但是现实的00 0D&#xff0c;这是大小端的问题&#xff0c;在matlanb里设置&#xff0c;我们就默认用这个模式…...

二分、快排、堆排与双指针

二分 int Binary_Search(vector<int> A,int key){int nA.size();int low0,highn-1,mid;while(low<high){mid(lowhigh)/2;if(A[mid]key)return mid;else if(A[mid]>key)highmid-1;elselowmid1; }return -1; }折半插入排序 ——找到第一个 ≥ \ge ≥tem的元素 voi…...

微信小程序步数返还的时间戳为什么返回的全是1970?

微信小程序步数返还的时间戳为什么返回的全是1970&#xff1f; 将返回的时间 乘以 1000 再 new Date() 转化就对了 微信返回的是秒S单位的&#xff0c;我们要转化为毫秒ms单位&#xff0c;才能进行格式化日期。 微信给我们下了个坑&#xff0c; 参考&#xff1a; https://d…...

Python函数——函数介绍

一、引言 在Python编程中&#xff0c;函数是构建高效代码的关键。通过创建可重用的代码块&#xff0c;我们可以使程序更加清晰、易读且易于维护。在本文中&#xff0c;我们将深入了解Python函数的基本概念及其特性。 二、Python函数的基本概念 函数是一段具有特定功能的代码块…...

【Linux系统化学习】文件重定向

目录 文件内核对象 文件描述符的分配规则 重定向 重定向的概念 dup2系统调用 输出重定向 追加重定向 输入重定向 stderr解析 重定向到同一个文件中 分离常规输出和错输出 文件内核对象 上篇文章中我们介绍到了操作系统中的文件&#xff0c;操作系统为了方…...

防火墙工作模式详解

防火墙工作模式是指防火墙在网络中的工作方式和策略。常见的防火墙工作模式包括以下几种&#xff1a; 1. 包过滤工作模式&#xff1a;根据事先确定的规则集合&#xff0c;对进出网络的网络包进行过滤和检查。根据规则&#xff0c;防火墙可以允许或阻止特定的网络流量。 2. 代…...

CCF编程能力等级认证GESP—C++6级—20231209

CCF编程能力等级认证GESP—C6级—20231209 单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09;判断题&#xff08;每题 2 分&#xff0c;共 20 分&#xff09;编程题 (每题 25 分&#xff0c;共 50 分)闯关游戏工作沟通 答案及解析单选题判断题编程题1编程题2 单选题…...

ES6 ~ ES11 学习笔记

课程地址 ES6 let let 不能重复声明变量&#xff08;var 可以&#xff09; let a; let b, c, d; let e 100; let f 521, g "atguigu", h [];let 具有块级作用域&#xff0c;内层变量外层无法访问 let 不存在变量提升&#xff08;运行前收集变量和函数&#…...

001 - Hugo, 创建一个网站

001 - Hugo, 创建一个网站安装hugoWindows系统Macos Hugo博客搭建初始化博客主题安装配置博客各个页面开始创作创建 GitHub Page 仓库本地调试和预览发布内容 教程及鸣谢文字教程视频教程 001 - Hugo, 创建一个网站 这篇文章假设你已经&#xff1a; 了解基本的终端命令行知识&…...

前端开发:Vue框架与前端部署

Vue Vue是一套前端框架&#xff0c;免除原生)avaScript中的DOM操作&#xff0c;简化书写。是基于MVVM(Model–View-ViewModel)思想&#xff0c;实现数据的双向绑定&#xff0c;将编程的关注点放在数据上。简单来说&#xff0c;就是数据变化的时候, 页面会自动刷新, 页面变化的时…...

【leetcode】深搜、暴搜、回溯、剪枝(C++)3

深搜、暴搜、回溯、剪枝&#xff08;C&#xff09;3 一、解数独1、题目描述2、代码3、解析 二、单词搜索1、题目描述2、代码3、解析 三、黄金矿工1、题目描述2、代码3、解析 四、不同路径III1、题目描述2、代码3、解析 一、解数独 1、题目描述 leetcode链接 2、代码 class…...

社区养老|社区养老服务系统|基于springboot社区养老服务系统设计与实现(源码+数据库+文档)

社区养老服务系统目录 目录 基于springboot社区养老服务系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员部分功能 &#xff08;1&#xff09; 用户管理 &#xff08;2&#xff09;服务种类管理 &#xff08;3&#xff09;社区服务管理 &#xff08…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源&#xff0c;提供了很全面的思路&#xff0c;减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接&#xff1a;https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架&#xff1a; 代码框架结构&#xff1a;readme有…...

写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里

写一个shell脚本&#xff0c;把局域网内&#xff0c;把能ping通的IP和不能ping通的IP分类&#xff0c;并保存到两个文本文件里 脚本1 #!/bin/bash #定义变量 ip10.1.1 #循环去ping主机的IP for ((i1;i<10;i)) doping -c1 $ip.$i &>/dev/null[ $? -eq 0 ] &&am…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件&#xff0c;其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时&#xff0c;价带电子受激发跃迁至导带&#xff0c;形成电子-空穴对&#xff0c;导致材料电导率显著提升。…...

Linux信号保存与处理机制详解

Linux信号的保存与处理涉及多个关键机制&#xff0c;以下是详细的总结&#xff1a; 1. 信号的保存 进程描述符&#xff08;task_struct&#xff09;&#xff1a;每个进程的PCB中包含信号相关信息。 pending信号集&#xff1a;记录已到达但未处理的信号&#xff08;未决信号&a…...