当前位置: 首页 > news >正文

数据分析(一) 理解数据

1. 描述性统计(summary)

对于一个新数据集,首先通过观察来熟悉它,可以打印数据相关信息来大致观察数据的常规特点,比如数据规模(行数列数)、数据类型、类别数量(变量数目、取值范围)、缺失值、异常值等等。然后通过描述性统计来了解数据的统计特性、属性间关联关系、属性与标签的关联关系等。

数据集一般是按照行列组织的,每行代表一个实例,每列代表一个属性。

import pandas as pd

import sys

import numpy as np

import pylab

import matplotlib.pyplot as plt

data = pd.read_csv(r"C:\work\PycharmProjects\machine_learning\filename.csv", index_col=0)

# summary

nrow, ncol = data.shape

print(f"行数:{nrow}, 列数:{ncol}")

summary = data.describe()

print(summary)

# 箱线图

data_array = data.iloc[:, :3].values

pylab.boxplot(data_array)

plt.xlabel("Attribute Index")

plt.ylabel(("Quartile Ranges"))

pylab.show()

# 标准化后的箱线图

dataNormalized = data.iloc[:, :3]

for i in range(2):

    mean = summary.iloc[1, i]

    sd = summary.iloc[2, i]

    dataNormalized.iloc[:, i:(i + 1)] = (dataNormalized.iloc[:, i:(i + 1)] - mean) / sd

    array3 = dataNormalized.values

pylab.boxplot(array3)

plt.xlabel("Attribute Index")

plt.ylabel(("Quartile Ranges - Normalized "))

pylab.show()

colArray = np.array(list(data.iloc[:, 0]))

colMean = np.mean(colArray)

colsd = np.std(colArray)

sys.stdout.write("Mean = " + '\t' + str(colMean) + '\t\t' +

                 "Standard Deviation = " + '\t ' + str(colsd) + "\n")

# calculate quantile boundaries(四分位数边界)

ntiles = 4

percentBdry = []

for i in range(ntiles + 1):

    percentBdry.append(np.percentile(colArray, i * (100) / ntiles))

sys.stdout.write("\nBoundaries for 4 Equal Percentiles \n")

print(percentBdry)

sys.stdout.write(" \n")

# run again with 10 equal intervals(十分位数边界)

ntiles = 10

percentBdry = []

for i in range(ntiles + 1):

    percentBdry.append(np.percentile(colArray, i * (100) / ntiles))

sys.stdout.write("Boundaries for 10 Equal Percentiles \n")

print(percentBdry)

sys.stdout.write(" \n")

# The last column contains categorical variables(标签变量)

colData = list(data.iloc[:, 1])

unique = set(colData)

sys.stdout.write("Unique Label Values \n")

print(unique)

# count up the number of elements having each value

catDict = dict(zip(list(unique), range(len(unique))))

catCount = [0] * 2

for elt in colData:

    catCount[catDict[elt]] += 1

sys.stdout.write("\nCounts for Each Value of Categorical Label \n")

print(list(unique))

print(catCount)

图中显示了一个小长方形,有一个红线穿过它。红线代表此列数据的中位数(第 50 百分位数),长方形的顶和底分别表示第 25 百分位数和第 75 百分位数(或者第一四分位数、第三四分位数)。在盒子的上方和下方有小的水平线,叫作盒须(whisker)。它们分别据盒子的上边和下边是四分位间距的 1.4 倍,四分位间距就是第 75 百分位数和第 25 百分位数之间的距离,也就是从盒子的顶边到盒子底边的距离。也就是说盒子上面的盒须到盒子顶边的距离是盒子高度的 1.4 倍。这个盒须的 1.4 倍距离是可以调整的(详见箱线图的相关文档)。在有些情况下,盒须要比 1.4 倍距离近,这说明数据的值并没有扩散到原定计算出来的盒须的位置。在这种情况下,盒须被放在最极端的点上。在另外一些情况下,数据扩散到远远超出计算出的盒须的位置(1.4 倍盒子高度的距离),这些点被认为是异常点。

2. 二阶统计信息(distribute,corr)

# 分位数图

import scipy.stats as stats

import pylab

stats.probplot(colArray, dist="norm", plot=pylab)

pylab.show()

如果此数据服从高斯分布,则画出来的点应该是接近一条直线。

# 属性间关系散点图

import matplotlib.pyplot as plt

data_row1 = data.iloc[0, :3]

data_row2 = data.iloc[1, :3]

plt.scatter(data_row1, data_row2)

plt.xlabel("1st Attribute")

plt.ylabel(("2nd Attribute"))

plt.show()

# 属性和标签相关性散点图

from random import uniform

target = []

for i in range(len(colData)):

    if colData[i] == 'R':  # R用1代表, M用0代表

        target.append(1)

    else:

        target.append(0)

plt.scatter(data_row1, target)

plt.xlabel("Attribute Value")

plt.ylabel("Target Value")

plt.show()

target = []

for i in range(len(colData)):

    if colData[i] == 'R':  # R用1代表, M用0代表

        target.append(1+uniform(-0.1, 0.1))

    else:

        target.append(0+uniform(-0.1, 0.1))

plt.scatter(data_row1, target, alpha=0.5, s=120)  # 透明度50%

plt.xlabel("Attribute Value")

plt.ylabel("Target Value")

plt.show()

第二个图绘制时取 alpha=0.5,这样这些点就是半透明的。那么在散点图中若多个点落在一个位置就会形成一个更黑的区域。

# 关系矩阵及其热图

corMat = pd.DataFrame(data.corr())

plt.pcolor(corMat)

plt.show()

属性之间如果完全相关(相关系数 =1)意味着数据可能有错误,如同样的数据录入两次。多个属性间的相关性很高(相关系数 >0.7),即多重共线性(multicollinearity),往往会导致预测结果不稳定。属性与标签的相关性则不同,如果属性和标签相关,则通常意味着两者之间具有可预测的关系

# 平行坐标图

minRings = summary.iloc[3, 2]  # summary第3行为min

maxRings = summary.iloc[7, 2]  # summary第7行为max

for i in range(nrow):

    # plot rows of data as if they were series data

    dataRow = data.iloc[i, :3]

    labelColor = (data.iloc[i, 2] - minRings) / (maxRings - minRings)

    dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)

plt.xlabel("Attribute Index")

plt.ylabel(("Attribute Values"))

plt.show()

# 对数变换后平行坐标图

meanRings = summary.iloc[1, 2]

sdRings = summary.iloc[2, 2]

for i in range(nrow):

    dataRow = data.iloc[i, :3]

    normTarget = (data.iloc[i, 2] - meanRings) / sdRings

    labelColor = 1.0 / (1.0 + np.exp(-normTarget))

    dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)

plt.xlabel("Attribute Index")

plt.ylabel(("Attribute Values"))

plt.show()

在属性值相近的地方,折线的颜色也比较接近,则会集中在一起。这些相关性都暗示可以构建相当准确的预测模型。相反,有些微弱的蓝色折线与深橘色的区域混合在一起,说明有些实例可能很难正确预测。

转换后可以更充分地利用颜色标尺中的各种颜色。注意到针对某些个属性,有些深蓝的线(对应年龄大的品种)混入了浅蓝线的区域,甚至是黄色、亮红的区域。这意味着,当该属性值较大时,仅仅这些属性不足以准确地预测出鲍鱼的年龄。好在其他属性可以很好地把深蓝线区分出来。这些观察都有助于分析预测错误的原因。

3. 完整代码(code)

import pandas as pd
import sys
import numpy as np
import pylab
import matplotlib.pyplot as pltdata = pd.read_csv(r"C:\work\PycharmProjects\machine_learning\filename.csv", index_col=0)nrow, ncol = data.shape
print(f"行数:{nrow}, 列数:{ncol}")
summary = data.describe()
print(summary)data_array = data.iloc[:, :3].values
pylab.boxplot(data_array)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges"))
pylab.show()dataNormalized = data.iloc[:, :3]
for i in range(2):mean = summary.iloc[1, i]sd = summary.iloc[2, i]dataNormalized.iloc[:, i:(i + 1)] = (dataNormalized.iloc[:, i:(i + 1)] - mean) / sdarray3 = dataNormalized.values
pylab.boxplot(array3)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges - Normalized "))
pylab.show()colArray = np.array(list(data.iloc[:, 0]))
colMean = np.mean(colArray)
colsd = np.std(colArray)
sys.stdout.write("Mean = " + '\t' + str(colMean) + '\t\t' +"Standard Deviation = " + '\t ' + str(colsd) + "\n")# calculate quantile boundaries(四分位数边界)
ntiles = 4
percentBdry = []
for i in range(ntiles + 1):percentBdry.append(np.percentile(colArray, i * (100) / ntiles))sys.stdout.write("\nBoundaries for 4 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")# run again with 10 equal intervals(十分位数边界)
ntiles = 10
percentBdry = []
for i in range(ntiles + 1):percentBdry.append(np.percentile(colArray, i * (100) / ntiles))
sys.stdout.write("Boundaries for 10 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")# The last column contains categorical variables(标签变量)
colData = list(data.iloc[:, 3])
unique = set(colData)
sys.stdout.write("Unique Label Values \n")
print(unique)# count up the number of elements having each value
catDict = dict(zip(list(unique), range(len(unique))))
catCount = [0] * 2
for elt in colData:catCount[catDict[elt]] += 1
sys.stdout.write("\nCounts for Each Value of Categorical Label \n")
print(list(unique))
print(catCount)# 分位数图
import scipy.stats as statsstats.probplot(colArray, dist="norm", plot=pylab)
pylab.show()# 属性间关系散点图
data_row1 = data.iloc[:, 0]
data_row2 = data.iloc[:, 1]
plt.scatter(data_row1, data_row2)
plt.xlabel("1st Attribute")
plt.ylabel(("2nd Attribute"))
plt.show()# 属性和标签相关性散点图
from random import uniformtarget = []
for i in range(len(colData)):if colData[i] == 'R':  # R用1代表, M用0代表target.append(1)else:target.append(0)
plt.scatter(data_row1, target)
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()target = []
for i in range(len(colData)):if colData[i] == 'R':  # R用1代表, M用0代表target.append(1 + uniform(-0.1, 0.1))else:target.append(0 + uniform(-0.1, 0.1))
plt.scatter(data_row1, target, alpha=0.5, s=120)  # 透明度50%
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()# 关系矩阵及其热图
corMat = pd.DataFrame(data.corr())
plt.pcolor(corMat)
plt.show()# 平行坐标图
minRings = summary.iloc[3, 2]  # summary第3行为min
maxRings = summary.iloc[7, 2]  # summary第7行为max
for i in range(nrow):# plot rows of data as if they were series datadataRow = data.iloc[i, :3]labelColor = (data.iloc[i, 2] - minRings) / (maxRings - minRings)dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()meanRings = summary.iloc[1, 2]
sdRings = summary.iloc[2, 2]
for i in range(nrow):dataRow = data.iloc[i, :3]normTarget = (data.iloc[i, 2] - meanRings) / sdRingslabelColor = 1.0 / (1.0 + np.exp(-normTarget))dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()

相关文章:

数据分析(一) 理解数据

1. 描述性统计(summary) 对于一个新数据集,首先通过观察来熟悉它,可以打印数据相关信息来大致观察数据的常规特点,比如数据规模(行数列数)、数据类型、类别数量(变量数目、取值范围…...

什么是 Flet?

什么是 Flet? Flet 是一个框架,允许使用您喜欢的语言构建交互式多用户 Web、桌面和移动应用程序,而无需前端开发经验。 您可以使用基于 Google 的 Flutter 的 Flet 控件为程序构建 UI。Flet 不只是“包装”Flutter 小部件,而是…...

多模态(三)--- BLIP原理与源码解读

1 BLIP简介 BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation 传统的Vision-Language Pre-training (VLP)任务大多是基于理解的任务或基于生成的任务,同时预训练数据多是从web获…...

掌握高性能SQL的34个秘诀多维度优化与全方位指南

掌握高性能SQL的34个秘诀🚀多维度优化与全方位指南 本篇文章从数据库表结构设计、索引、使用等多个维度总结出高性能SQL的34个秘诀,助你轻松掌握高性能SQL 表结构设计 字段类型越小越好 满足业务需求的同时字段类型越小越好 字段类型越小代表着记录占…...

美国纳斯达克大屏怎么投放:投放完成需要多长时间-大舍传媒Dashe Media

陕西大舍广告传媒有限公司(Shaanxi Dashe Advertising Media Co., Ltd),简称大舍传媒(Dashe Media),是纳斯达克在中国区的总代理(China General Agent)。与纳斯达克合作已经有八年的…...

【MySQL】多表关系的基本学习

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-3oES1ZdkKIklfKzq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…...

Springboot之接入gRPC

1、maven依赖 <properties><!-- grpc --><protobuf.version>3.5.1</protobuf.version><protobuf-plugin.version>0.6.1</protobuf-plugin.version><grpc.version>1.42.1</grpc.version><os-maven-plugin.version>1.6.0…...

2023年中国数据智能管理峰会(DAMS上海站2023):核心内容与学习收获(附大会核心PPT下载)

随着数字经济的飞速发展&#xff0c;数据已经渗透到现代社会的每一个角落&#xff0c;成为驱动企业创新、提升治理能力、促进经济发展的关键要素。在这样的背景下&#xff0c;2023年中国数据智能管理峰会&#xff08;DAMS上海站2023&#xff09;应运而生&#xff0c;汇聚了众多…...

DS:八大排序之堆排序、冒泡排序、快速排序

创作不易&#xff0c;友友们给个三连吧&#xff01;&#xff01; 一、堆排序 堆排序已经在博主关于堆的实现过程中详细的讲过了&#xff0c;大家可以直接去看&#xff0c;很详细,这边不介绍了 DS&#xff1a;二叉树的顺序结构及堆的实现-CSDN博客 直接上代码&#xff1a; …...

Sora:继ChatGPT之后,OpenAI的又一力作

关于Sora的报道&#xff0c;相信很多圈内朋友都已经看到了来自各大媒体铺天盖地的宣传了&#xff0c;这次&#xff0c;对于Sora的宣传&#xff0c;绝不比当初ChatGPT的宣传弱。自OpenAI发布了GPT4之后&#xff0c;就已经有很多视频生成模型了&#xff0c;不过这些模型要么生成的…...

阅读笔记(BMSB 2018)Video Stitching Based on Optical Flow

参考文献 Xie C, Zhang X, Yang H, et al. Video Stitching Based on Optical Flow[C]//2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2018: 1-5. 摘要 视频拼接在计算机视觉中仍然是一个具有挑战性的问题&#xff0…...

Ubuntu学习笔记-Ubuntu搭建禅道开源版及基本使用

文章目录 概述一、Ubuntu中安装1.1 复制下载安装包路径1.2 将安装包解压到ubuntu中1.3 启动服务1.4 设置开机自启动 二、禅道服务基本操作2.1 启动&#xff0c;停止&#xff0c;重启&#xff0c;查看服务状态2.2 开放端口2.3 访问和登录禅道 卜相机关 卜三命、相万生&#xff0…...

《苍穹外卖》知识梳理6-缓存商品,购物车功能

苍穹外卖实操笔记六—缓存商品&#xff0c;购物车功能 一.缓存菜品 可以使用redis进行缓存&#xff1b;另外&#xff0c;在实现缓存套餐时可以使用spring cache提高开发效率&#xff1b;   通过缓存数据&#xff0c;降低访问数据库的次数&#xff1b; 使用的缓存逻辑&#…...

[NSSCTF]-Web:[SWPUCTF 2021 新生赛]easy_sql解析

查看网页 有提示&#xff0c;参数是wllm&#xff0c;并且要我们输入点东西 所以&#xff0c;我们尝试以get方式传入 有回显&#xff0c;但似乎没啥用 从上图看应该是字符型漏洞&#xff0c;单引号字符注入 先查看字段数 /?wllm2order by 3-- 没回显 报错了&#xff0c;说明…...

vue3 codemirror yaml文件编辑器插件

需求&#xff1a;前端编写yaml配置文件 &#xff0c;检查yaml语法 提供语法高亮 。 默认内容从后端接口获取 显示在前端 &#xff0c; 前端在codemirror 插件中修改文件内容 &#xff0c;并提交修改 后端将提交的内容写入服务器配置文件中 。 codemirror 通过ref 后期编辑器…...

力扣经典题:环形链表的检测与返回

1.值得背的题 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode *detectCycle(struct ListNode *head) {struct ListNode*fasthead;struct ListNode*slowhead;while(fast!NULL&&fast->…...

【web | CTF】BUUCTF [BJDCTF2020]Easy MD5

天命&#xff1a;好像也挺实用的题目&#xff0c;也是比较经典吧 天命&#xff1a;把php的MD5漏洞都玩了一遍 第一关&#xff1a;MD5绕过 先声明一下&#xff1a;这题的MD5是php&#xff0c;不是mysql的MD5&#xff0c;把我搞迷糊了 一进来题目啥也没有&#xff0c;那么就要看…...

spring boot Mybatis Plus分页

文章目录 Mybatis Plus自带分页和PageHelper有什么区别&#xff1f;Mybatis Plus整合PageHelper分页 springboot自定义拦截器获取分页参数spring boot下配置mybatis-plus分页插件单表分页查询自定义sql分页查询PageHelper 参考 Mybatis Plus自带分页和PageHelper有什么区别&…...

elementui 中 el-date-picker 控制选择当前年之前或者之后的年份

文章目录 需求分析 需求 对 el-date-picker控件做出判断控制 分析 给 el-date-picker 组件添加 picker-options 属性&#xff0c;并绑定对应数据 pickerOptions html <el-form-item label"雨量年份&#xff1a;" prop"date"><el-date-picker …...

GlusterFS:开源分布式文件系统的深度解析与应用场景实践

引言 在当今大数据时代背景下&#xff0c;企业对存储系统的容量、性能和可靠性提出了前所未有的挑战。GlusterFS作为一款开源的、高度可扩展的分布式文件系统&#xff0c;以其独特的无中心元数据设计和灵活的卷管理机制&#xff0c;在众多场景中脱颖而出&#xff0c;为解决大规…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...