数据分析(一) 理解数据
1. 描述性统计(summary)
对于一个新数据集,首先通过观察来熟悉它,可以打印数据相关信息来大致观察数据的常规特点,比如数据规模(行数列数)、数据类型、类别数量(变量数目、取值范围)、缺失值、异常值等等。然后通过描述性统计来了解数据的统计特性、属性间关联关系、属性与标签的关联关系等。
数据集一般是按照行列组织的,每行代表一个实例,每列代表一个属性。
import pandas as pd
import sys
import numpy as np
import pylab
import matplotlib.pyplot as plt
data = pd.read_csv(r"C:\work\PycharmProjects\machine_learning\filename.csv", index_col=0)
# summary
nrow, ncol = data.shape
print(f"行数:{nrow}, 列数:{ncol}")
summary = data.describe()
print(summary)
# 箱线图
data_array = data.iloc[:, :3].values
pylab.boxplot(data_array)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges"))
pylab.show()
# 标准化后的箱线图
dataNormalized = data.iloc[:, :3]
for i in range(2):
mean = summary.iloc[1, i]
sd = summary.iloc[2, i]
dataNormalized.iloc[:, i:(i + 1)] = (dataNormalized.iloc[:, i:(i + 1)] - mean) / sd
array3 = dataNormalized.values
pylab.boxplot(array3)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges - Normalized "))
pylab.show()
colArray = np.array(list(data.iloc[:, 0]))
colMean = np.mean(colArray)
colsd = np.std(colArray)
sys.stdout.write("Mean = " + '\t' + str(colMean) + '\t\t' +
"Standard Deviation = " + '\t ' + str(colsd) + "\n")
# calculate quantile boundaries(四分位数边界)
ntiles = 4
percentBdry = []
for i in range(ntiles + 1):
percentBdry.append(np.percentile(colArray, i * (100) / ntiles))
sys.stdout.write("\nBoundaries for 4 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")
# run again with 10 equal intervals(十分位数边界)
ntiles = 10
percentBdry = []
for i in range(ntiles + 1):
percentBdry.append(np.percentile(colArray, i * (100) / ntiles))
sys.stdout.write("Boundaries for 10 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")
# The last column contains categorical variables(标签变量)
colData = list(data.iloc[:, 1])
unique = set(colData)
sys.stdout.write("Unique Label Values \n")
print(unique)
# count up the number of elements having each value
catDict = dict(zip(list(unique), range(len(unique))))
catCount = [0] * 2
for elt in colData:
catCount[catDict[elt]] += 1
sys.stdout.write("\nCounts for Each Value of Categorical Label \n")
print(list(unique))
print(catCount)
图中显示了一个小长方形,有一个红线穿过它。红线代表此列数据的中位数(第 50 百分位数),长方形的顶和底分别表示第 25 百分位数和第 75 百分位数(或者第一四分位数、第三四分位数)。在盒子的上方和下方有小的水平线,叫作盒须(whisker)。它们分别据盒子的上边和下边是四分位间距的 1.4 倍,四分位间距就是第 75 百分位数和第 25 百分位数之间的距离,也就是从盒子的顶边到盒子底边的距离。也就是说盒子上面的盒须到盒子顶边的距离是盒子高度的 1.4 倍。这个盒须的 1.4 倍距离是可以调整的(详见箱线图的相关文档)。在有些情况下,盒须要比 1.4 倍距离近,这说明数据的值并没有扩散到原定计算出来的盒须的位置。在这种情况下,盒须被放在最极端的点上。在另外一些情况下,数据扩散到远远超出计算出的盒须的位置(1.4 倍盒子高度的距离),这些点被认为是异常点。
2. 二阶统计信息(distribute,corr)
# 分位数图
import scipy.stats as stats
import pylab
stats.probplot(colArray, dist="norm", plot=pylab)
pylab.show()
如果此数据服从高斯分布,则画出来的点应该是接近一条直线。
# 属性间关系散点图
import matplotlib.pyplot as plt
data_row1 = data.iloc[0, :3]
data_row2 = data.iloc[1, :3]
plt.scatter(data_row1, data_row2)
plt.xlabel("1st Attribute")
plt.ylabel(("2nd Attribute"))
plt.show()
# 属性和标签相关性散点图
from random import uniform
target = []
for i in range(len(colData)):
if colData[i] == 'R': # R用1代表, M用0代表
target.append(1)
else:
target.append(0)
plt.scatter(data_row1, target)
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()
target = []
for i in range(len(colData)):
if colData[i] == 'R': # R用1代表, M用0代表
target.append(1+uniform(-0.1, 0.1))
else:
target.append(0+uniform(-0.1, 0.1))
plt.scatter(data_row1, target, alpha=0.5, s=120) # 透明度50%
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()
第二个图绘制时取 alpha=0.5,这样这些点就是半透明的。那么在散点图中若多个点落在一个位置就会形成一个更黑的区域。
# 关系矩阵及其热图
corMat = pd.DataFrame(data.corr())
plt.pcolor(corMat)
plt.show()
属性之间如果完全相关(相关系数 =1)意味着数据可能有错误,如同样的数据录入两次。多个属性间的相关性很高(相关系数 >0.7),即多重共线性(multicollinearity),往往会导致预测结果不稳定。属性与标签的相关性则不同,如果属性和标签相关,则通常意味着两者之间具有可预测的关系
# 平行坐标图
minRings = summary.iloc[3, 2] # summary第3行为min
maxRings = summary.iloc[7, 2] # summary第7行为max
for i in range(nrow):
# plot rows of data as if they were series data
dataRow = data.iloc[i, :3]
labelColor = (data.iloc[i, 2] - minRings) / (maxRings - minRings)
dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()
# 对数变换后平行坐标图
meanRings = summary.iloc[1, 2]
sdRings = summary.iloc[2, 2]
for i in range(nrow):
dataRow = data.iloc[i, :3]
normTarget = (data.iloc[i, 2] - meanRings) / sdRings
labelColor = 1.0 / (1.0 + np.exp(-normTarget))
dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()
在属性值相近的地方,折线的颜色也比较接近,则会集中在一起。这些相关性都暗示可以构建相当准确的预测模型。相反,有些微弱的蓝色折线与深橘色的区域混合在一起,说明有些实例可能很难正确预测。
转换后可以更充分地利用颜色标尺中的各种颜色。注意到针对某些个属性,有些深蓝的线(对应年龄大的品种)混入了浅蓝线的区域,甚至是黄色、亮红的区域。这意味着,当该属性值较大时,仅仅这些属性不足以准确地预测出鲍鱼的年龄。好在其他属性可以很好地把深蓝线区分出来。这些观察都有助于分析预测错误的原因。
3. 完整代码(code)
import pandas as pd
import sys
import numpy as np
import pylab
import matplotlib.pyplot as pltdata = pd.read_csv(r"C:\work\PycharmProjects\machine_learning\filename.csv", index_col=0)nrow, ncol = data.shape
print(f"行数:{nrow}, 列数:{ncol}")
summary = data.describe()
print(summary)data_array = data.iloc[:, :3].values
pylab.boxplot(data_array)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges"))
pylab.show()dataNormalized = data.iloc[:, :3]
for i in range(2):mean = summary.iloc[1, i]sd = summary.iloc[2, i]dataNormalized.iloc[:, i:(i + 1)] = (dataNormalized.iloc[:, i:(i + 1)] - mean) / sdarray3 = dataNormalized.values
pylab.boxplot(array3)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges - Normalized "))
pylab.show()colArray = np.array(list(data.iloc[:, 0]))
colMean = np.mean(colArray)
colsd = np.std(colArray)
sys.stdout.write("Mean = " + '\t' + str(colMean) + '\t\t' +"Standard Deviation = " + '\t ' + str(colsd) + "\n")# calculate quantile boundaries(四分位数边界)
ntiles = 4
percentBdry = []
for i in range(ntiles + 1):percentBdry.append(np.percentile(colArray, i * (100) / ntiles))sys.stdout.write("\nBoundaries for 4 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")# run again with 10 equal intervals(十分位数边界)
ntiles = 10
percentBdry = []
for i in range(ntiles + 1):percentBdry.append(np.percentile(colArray, i * (100) / ntiles))
sys.stdout.write("Boundaries for 10 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")# The last column contains categorical variables(标签变量)
colData = list(data.iloc[:, 3])
unique = set(colData)
sys.stdout.write("Unique Label Values \n")
print(unique)# count up the number of elements having each value
catDict = dict(zip(list(unique), range(len(unique))))
catCount = [0] * 2
for elt in colData:catCount[catDict[elt]] += 1
sys.stdout.write("\nCounts for Each Value of Categorical Label \n")
print(list(unique))
print(catCount)# 分位数图
import scipy.stats as statsstats.probplot(colArray, dist="norm", plot=pylab)
pylab.show()# 属性间关系散点图
data_row1 = data.iloc[:, 0]
data_row2 = data.iloc[:, 1]
plt.scatter(data_row1, data_row2)
plt.xlabel("1st Attribute")
plt.ylabel(("2nd Attribute"))
plt.show()# 属性和标签相关性散点图
from random import uniformtarget = []
for i in range(len(colData)):if colData[i] == 'R': # R用1代表, M用0代表target.append(1)else:target.append(0)
plt.scatter(data_row1, target)
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()target = []
for i in range(len(colData)):if colData[i] == 'R': # R用1代表, M用0代表target.append(1 + uniform(-0.1, 0.1))else:target.append(0 + uniform(-0.1, 0.1))
plt.scatter(data_row1, target, alpha=0.5, s=120) # 透明度50%
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()# 关系矩阵及其热图
corMat = pd.DataFrame(data.corr())
plt.pcolor(corMat)
plt.show()# 平行坐标图
minRings = summary.iloc[3, 2] # summary第3行为min
maxRings = summary.iloc[7, 2] # summary第7行为max
for i in range(nrow):# plot rows of data as if they were series datadataRow = data.iloc[i, :3]labelColor = (data.iloc[i, 2] - minRings) / (maxRings - minRings)dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()meanRings = summary.iloc[1, 2]
sdRings = summary.iloc[2, 2]
for i in range(nrow):dataRow = data.iloc[i, :3]normTarget = (data.iloc[i, 2] - meanRings) / sdRingslabelColor = 1.0 / (1.0 + np.exp(-normTarget))dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()
相关文章:

数据分析(一) 理解数据
1. 描述性统计(summary) 对于一个新数据集,首先通过观察来熟悉它,可以打印数据相关信息来大致观察数据的常规特点,比如数据规模(行数列数)、数据类型、类别数量(变量数目、取值范围…...

什么是 Flet?
什么是 Flet? Flet 是一个框架,允许使用您喜欢的语言构建交互式多用户 Web、桌面和移动应用程序,而无需前端开发经验。 您可以使用基于 Google 的 Flutter 的 Flet 控件为程序构建 UI。Flet 不只是“包装”Flutter 小部件,而是…...

多模态(三)--- BLIP原理与源码解读
1 BLIP简介 BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation 传统的Vision-Language Pre-training (VLP)任务大多是基于理解的任务或基于生成的任务,同时预训练数据多是从web获…...

掌握高性能SQL的34个秘诀多维度优化与全方位指南
掌握高性能SQL的34个秘诀🚀多维度优化与全方位指南 本篇文章从数据库表结构设计、索引、使用等多个维度总结出高性能SQL的34个秘诀,助你轻松掌握高性能SQL 表结构设计 字段类型越小越好 满足业务需求的同时字段类型越小越好 字段类型越小代表着记录占…...

美国纳斯达克大屏怎么投放:投放完成需要多长时间-大舍传媒Dashe Media
陕西大舍广告传媒有限公司(Shaanxi Dashe Advertising Media Co., Ltd),简称大舍传媒(Dashe Media),是纳斯达克在中国区的总代理(China General Agent)。与纳斯达克合作已经有八年的…...

【MySQL】多表关系的基本学习
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-3oES1ZdkKIklfKzq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…...

Springboot之接入gRPC
1、maven依赖 <properties><!-- grpc --><protobuf.version>3.5.1</protobuf.version><protobuf-plugin.version>0.6.1</protobuf-plugin.version><grpc.version>1.42.1</grpc.version><os-maven-plugin.version>1.6.0…...

2023年中国数据智能管理峰会(DAMS上海站2023):核心内容与学习收获(附大会核心PPT下载)
随着数字经济的飞速发展,数据已经渗透到现代社会的每一个角落,成为驱动企业创新、提升治理能力、促进经济发展的关键要素。在这样的背景下,2023年中国数据智能管理峰会(DAMS上海站2023)应运而生,汇聚了众多…...

DS:八大排序之堆排序、冒泡排序、快速排序
创作不易,友友们给个三连吧!! 一、堆排序 堆排序已经在博主关于堆的实现过程中详细的讲过了,大家可以直接去看,很详细,这边不介绍了 DS:二叉树的顺序结构及堆的实现-CSDN博客 直接上代码: …...

Sora:继ChatGPT之后,OpenAI的又一力作
关于Sora的报道,相信很多圈内朋友都已经看到了来自各大媒体铺天盖地的宣传了,这次,对于Sora的宣传,绝不比当初ChatGPT的宣传弱。自OpenAI发布了GPT4之后,就已经有很多视频生成模型了,不过这些模型要么生成的…...
阅读笔记(BMSB 2018)Video Stitching Based on Optical Flow
参考文献 Xie C, Zhang X, Yang H, et al. Video Stitching Based on Optical Flow[C]//2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2018: 1-5. 摘要 视频拼接在计算机视觉中仍然是一个具有挑战性的问题࿰…...

Ubuntu学习笔记-Ubuntu搭建禅道开源版及基本使用
文章目录 概述一、Ubuntu中安装1.1 复制下载安装包路径1.2 将安装包解压到ubuntu中1.3 启动服务1.4 设置开机自启动 二、禅道服务基本操作2.1 启动,停止,重启,查看服务状态2.2 开放端口2.3 访问和登录禅道 卜相机关 卜三命、相万生࿰…...

《苍穹外卖》知识梳理6-缓存商品,购物车功能
苍穹外卖实操笔记六—缓存商品,购物车功能 一.缓存菜品 可以使用redis进行缓存;另外,在实现缓存套餐时可以使用spring cache提高开发效率; 通过缓存数据,降低访问数据库的次数; 使用的缓存逻辑&#…...

[NSSCTF]-Web:[SWPUCTF 2021 新生赛]easy_sql解析
查看网页 有提示,参数是wllm,并且要我们输入点东西 所以,我们尝试以get方式传入 有回显,但似乎没啥用 从上图看应该是字符型漏洞,单引号字符注入 先查看字段数 /?wllm2order by 3-- 没回显 报错了,说明…...

vue3 codemirror yaml文件编辑器插件
需求:前端编写yaml配置文件 ,检查yaml语法 提供语法高亮 。 默认内容从后端接口获取 显示在前端 , 前端在codemirror 插件中修改文件内容 ,并提交修改 后端将提交的内容写入服务器配置文件中 。 codemirror 通过ref 后期编辑器…...

力扣经典题:环形链表的检测与返回
1.值得背的题 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode *detectCycle(struct ListNode *head) {struct ListNode*fasthead;struct ListNode*slowhead;while(fast!NULL&&fast->…...

【web | CTF】BUUCTF [BJDCTF2020]Easy MD5
天命:好像也挺实用的题目,也是比较经典吧 天命:把php的MD5漏洞都玩了一遍 第一关:MD5绕过 先声明一下:这题的MD5是php,不是mysql的MD5,把我搞迷糊了 一进来题目啥也没有,那么就要看…...

spring boot Mybatis Plus分页
文章目录 Mybatis Plus自带分页和PageHelper有什么区别?Mybatis Plus整合PageHelper分页 springboot自定义拦截器获取分页参数spring boot下配置mybatis-plus分页插件单表分页查询自定义sql分页查询PageHelper 参考 Mybatis Plus自带分页和PageHelper有什么区别&…...

elementui 中 el-date-picker 控制选择当前年之前或者之后的年份
文章目录 需求分析 需求 对 el-date-picker控件做出判断控制 分析 给 el-date-picker 组件添加 picker-options 属性,并绑定对应数据 pickerOptions html <el-form-item label"雨量年份:" prop"date"><el-date-picker …...

GlusterFS:开源分布式文件系统的深度解析与应用场景实践
引言 在当今大数据时代背景下,企业对存储系统的容量、性能和可靠性提出了前所未有的挑战。GlusterFS作为一款开源的、高度可扩展的分布式文件系统,以其独特的无中心元数据设计和灵活的卷管理机制,在众多场景中脱颖而出,为解决大规…...

第6个-滚动动画
Day 6 - Scroll Animation 1. 演示效果 2. 分析思路 布局 所有的内容进行水平垂直居中,可以使用**margin:0 auto;,也可以使用flex**布局: body {background-color: #efedd6;display: flex;flex-direction: column;justify-content: center…...

配置oracle连接管理器(cman)
Oracle Connection Manager是一个软件组件,可以在oracle客户端上指定安装这个组件,Oracle连接管理器代理发送给数据库服务器的请求,在连接管理器中,我们可以通过配置各种规则来控制会话访问。 简而言之,不同于专用连接…...

[N-142]基于springboot,vue停车场管理系统
开发工具:IDEA 服务器:Tomcat9.0, jdk1.8 项目构建:maven 数据库:mysql5.7 项目采用前后端分离 前端技术:vueelementUI 服务端技术:springbootmybatis-plus 本项目分为普通用户和管理员…...

DAY53:动态规划(买股票的最佳时机)
Leetcode: 121 买卖股票的最佳时机 代码随想录 1、确定下标和含义 dp[i][0]表示当天持有股票所得的最多现金 do[i][1]表示当天不持有股票的最多现金 2、递推公式 (1)如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来 第i-1天就…...

快速实现用户认证:使用Python和Flask配合PyJWT生成与解密Token的教程及示例代码
生成token 与解密 token 和 拦截器 #学习交流 访问 # https://v.iiar.cnimport jwt import datetime from models import XUser from flask import request, jsonify from functools import wrapsSECRET_KEY XPay# 创建token def generate_token(user_id):try:payload {exp:…...

外汇110:外汇做空是什么意思?如何运作?一文读懂
外汇市场允许卖空,就像众多金融市场一样。但什么是卖空呢?如何外汇做空?在本文中,我们将讨论如何做空货币。什么是外汇做空? 外汇做空(Short Selling)是外汇市场上的一种投资方式。它指的是投资…...

【记录】个人博客或笔记中的数学符号设定
note 这里记录个人博客中常用的数学符号数学格式和对应含义 文章目录 note数与数组索引集合线性代数微积分概率和信息论数据与概率分布函数深度学习中的常用数学表达方式 数与数组 α 标量 α 向量 A 矩阵 A 张量 I n n 行 n 列单位矩阵 v w 单词 w 的分布式向量表示 …...

Redis Sentinel工作原理
Redis Sentinel是Redis的高可用性解决方案。它主要用来监控Redis master和slave服务器的运行状态,并在master宕机时自动进行故障转移,即从slave节点中选举出新的master节点,并让其余的slave节点指向新的master节点。 Redis Sentinel工作原理…...

GEE入门篇|遥感专业术语:理论介绍
本章的目的是介绍遥感图像的一些主要特征,以及如何在Earth Engine中检查它们。我们将讨论空间分辨率、时间分辨率和光谱分辨率,以及如何访问重要的图像元数据。将了解到来自不同卫星平台上的几个传感器的图像数据。在本章的学习完成后,您将能…...

react中如何做到中断diff过程和恢复
workLoop是 实现时间切片 和 可中断渲染的核心,简要说明如下: // 并发任务的入口function workLoopConcurrent() {// Perform work until Scheduler asks us to yield// 有任务 & 是否需要中断while (workInProgress ! null && !shouldYiel…...