Python_pytorch
python_pytorch
小土堆pytotch学习视频链接
from的是一个个的包(package)
import 的是一个个的py文件(file.py)
所使用的一般是文件中的类(.class)
第一步实例化所使用的类,然后调用类中的方法(def)
Dataset
数据集处理
import os
from PIL import Image
from torch.utils.data import Datasetclass MyData(Dataset):def __init__(self,root_dir,label_dir):self.root_dir=root_dirself.label_dir=label_dirself.path=os.path.join(self.root_dir,self.label_dir)self.datalist=os.listdir(self.path)def __getitem__(self,idx):label=self.label_dirimg_path=os.path.join(self.root_dir,self.label_dir,self.datalist[idx])img=Image.open(img_path)return img,label
数据集调用
root_dir='/content/hymenoptera_data/train'
label_dir='ants'ants=MyData(root_dir,label_dir)
img,label=ants[1]
img.show()
img,label
zip解压
import zipfile
zip_file=zipfile.ZipFile('/content/hymenoptera_data.zip')zip_extract=zip_file.extractall('/content')
zip_file.close()
TensorBoard
from torch.utils.tensorboard import SummaryWriter
# help(SummaryWriter)writer=SummaryWriter("/content/log")
for i in range(100):writer.add_scalar('y=x',i,i)
writer.close()
#经常用add_iamge()方法# tensorboard --logdir="log" 在服务器显示记录的数据(终端输入)
Transform
1,Transform 如何使用
from torchvision import transforms
from PIL import Image
img_path="/content/QQ图片20210203204459.jpg"
img=Image.open(img_path)
print(type(img))
tensor_trans=transforms.ToTensor()
tensor_img=tensor_trans(img)
print(tensor_img)
tensor_img.shape
2,我们为什么要使用tensor数据类型
包装了我们神经网络中很多(反向传播,梯度计算等)所必须的数据处理类型。
import cv2
from torch.utils.tensorboard import SummaryWriter
img_cv=cv2.imread(img_path)
print(type(img_cv))
tensor_trans2=transforms.ToTensor()
tensor_image=tensor_trans2(img_cv)
print(type(tensor_image))
writer=SummaryWriter("/content/log")
writer.add_image("tensor_img",tensor_image)
writer.close()
3,常见的Transforms
Totensor
from torchvision import transforms#totensor 把narray和PIL类型转化为tensor类型
trans_tensor=transforms.ToTensor()
print(type(img))
img_tensor=trans_tensor(img)
print(type(img_tensor))
resize
from torchvision import transforms#Resize 把输入的图片尺寸更改为任意的尺寸a or (a,b)...
trans_resize=transforms.Resize((512,551))
print(img.size)
img_resize=trans_resize(img)
print(img_resize.size)
compose
from torchvision import transforms# compose 结合多种transforms的转换方法
trans_compose=transforms.Compose([trans_resize,trans_tensor])
img_compose=trans_compose(img)
print(img_compose.shape,type(img_compose))
待补充…
相关文章:

Python_pytorch
python_pytorch 小土堆pytotch学习视频链接 from的是一个个的包(package) import 的是一个个的py文件(file.py) 所使用的一般是文件中的类(.class) 第一步实例化所使用的类,然后调用类中的方法(def) Dataset 数据集处理 import os from PIL impo…...

【Java|golang】2335. 装满杯子需要的最短总时长
现有一台饮水机,可以制备冷水、温水和热水。每秒钟,可以装满 2 杯 不同 类型的水或者 1 杯任意类型的水。 给你一个下标从 0 开始、长度为 3 的整数数组 amount ,其中 amount[0]、amount[1] 和 amount[2] 分别表示需要装满冷水、温水和热水的…...

shell编程之sed
文章目录八、shell编程之sed8.1 工作原理8.2 sed基本语法8.3 模式空间中的编辑操作8.3.1 地址定界8.3.2 常用编辑命令8.4 sed扩展八、shell编程之sed 8.1 工作原理 sed是一种流编辑器,它是文本处理中非常有用的工具,能够完美的配合正则表达式使用&…...

安全寒假作业nginx反向代理+负载均衡上传webshell重难点+apache漏洞
1.应用场景 负载均衡作为现今解决web应用承载大流量访问问题的一种方案,在真实环境中得到广泛的部署。实现负载均衡的方式有很多种,比如 DNS 方式、HTTP 重定向方式、IP 负载均衡方式、反向代理方式等等。 比如基于dns的负载均衡: 当然还有…...

day35|01背包问题、416. 分割等和子集
01背包问题 有n件物品和一个最多能背重量为w的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 例:背包最大重量为4。 物品为: 重量价值物品0115物品…...

Linux内核启动(3,0.11版本)内核启动完成与进入内核main函数
这一部分是在讲解head.s代码,这个代码与bootsect.s和setup.s在同一目录下,但是head.s程序在被编译生成目标文件后会与内核其他程序一起被链接成system模块,位于system模块的最前面开始部分。system模块将被放置在磁盘上setup模块之后开始的扇…...

【2023】Prometheus-Alertmanager高可用集群
本次实验准备了三个节点,分别为laert-01~03 目录1.安装Alertmanager2.配置启动文件3.验证集群4.关于集群的配置项1.安装Alertmanager 这部分内容在三个节点上都要执行 下载安装包,将安装包解压至/data目录下 wget https://github.com/prometheus/aler…...
2023-2-11 刷题情况
最短路计数 题目描述 给出一个 NNN 个顶点 MMM 条边的无向无权图,顶点编号为 1∼N1\sim N1∼N。问从顶点 111 开始,到其他每个点的最短路有几条。 输入格式 第一行包含 222 个正整数 N,MN,MN,M,为图的顶点数与边数。 接下来 MMM 行&…...

2019_41 考研408
2019年(单链表)41.(13分)设线性表采用带头结点的单链表保存,链表中的结点定义如下:typedef struct node {int data;struct node* next;}NODE;请设计一个空间复杂度为O(1)且时间上尽可能高效的算法,重新排列L中的各结点,得到线性表L(q,a,,a,an…...

Linux账号与用户组
目录 用户标识符:UID与GID 用户账号 /etc/passwd文件结构 1、账号名称 2、密码 3、UID 4、GID 5、用户信息说明栏 6、家目录 7、shell /etc/shadow文件结构 1、账号名称 2、密码 3、最近修改密码的日期 4、密码不可被修改的天数(与第三字…...

有趣的Hack-A-Sat黑掉卫星挑战赛——定位卫星Jackson
国家太空安全是国家安全在空间领域的表现。随着太空技术在政治、经济、军事、文化等各个领域的应用不断增加,太空已经成为国家赖以生存与发展的命脉之一,凝聚着巨大的国家利益,太空安全的重要性日益凸显[1]。而在信息化时代,太空安…...

JAVA集合专题3 —— vector + LinkedList + Set
目录vector的特点LinkedList底层结构模拟双向链表比较ArrayList和LinkedListSet接口基本介绍Set接口的遍历方式Set接口实现类对象的特点Set接口实现类HashSet模拟HashSet/HashMap的底层结构vector的特点 Vector底层是一个对象数组Vector是线程同步的,即线程安全的&…...

Scout:一款功能强大的轻量级URL模糊测试与爬取工具
关于Scout Scout是一款功能强大的轻量级URL模糊测试与爬取工具,可以帮助广大研究人员进行URL模糊测试,并爬取目标Web服务器中难以扫描发现的VHSOT、文件和目录等资源。 项目中包含了一个完整的字典文件,并尽可能地提供了更多的便携性&#…...

leaflet 解决marker呈现灰色边框的问题
第052个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet示例中处理marker外面有灰色边框的问题,请看未处理会后的图片。 处理后的结果非常满意,不再显示灰色边框。处理方法参考源代码。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果; 注意…...
MySQL JSON类型字段的查找与更新
MySQL 提供了丰富的函数用于 JSON 类型字段的查找与更新,详见官方文档。 创建一个表 t1,basic_info 字段为JSON类型: CREATE TABLE t1 (id int(11) NOT NULL AUTO_INCREMENT,basic_info json DEFAULT NULL,PRIMARY KEY (id) ) ENGINEInnoDB DEFAULT CH…...

element Ui树状图控件 spring boot Vue 实现角色授权功能
目录 前言: 二. element ui 2.1官网提供的核心代码 三.表结构 编辑 四.后端 4.1功能分析 4.2实体类 4.3 查询全部权限显示的结果 4.2修改角色权限的后台方法 五.vue 5.0代码总览 5.1树形图 5.2所需要的绑定数据 5.3所需方法 前言: 先上图…...

已解决sc delete MongoDB卸载MongoDB拒绝访问。
已解决sc delete MongoDB卸载MongoDB拒绝访问。 文章目录报错问题报错翻译报错原因解决方法联系博主免费帮忙解决报错报错问题 粉丝群里面的一个小伙伴遇到问题跑来私信我,想卸载MongoDB数据库,但是发生了报错(当时他心里瞬间凉了一大截&…...

python的opencv操作记录11——阈值分割
文章目录传统图像处理分割阈值分割一个应用场景opencv库中的阈值分割固定阈值THRESH_OTSU 大津法阈值自适应阈值传统图像处理分割 现在提到图像分割,很多人会直接想到当前火爆的深度学习的各种分割网络,比如实例分割,语义分割等。其实在传统…...

Python-项目实战--飞机大战-英雄登场(7)
目标设计英雄和子弹类使用pygame.key.get_pressed()移动英雄发射子弹1.设计英雄和子弹类1.1英雄需求游戏启动后,英雄出现在屏幕的水平中间位置,距离屏幕底部120像素英雄每隔0.5秒发射一次子弹,每次连发三枚子弹英雄默认不会移动,需…...

寒假安全作业nginx-host绕过实例复现
1.测试环境搭建 LNMP架构的话,肯定就是linux、nginx、mysql、php四大组件。在后面的复现中我们还会用到https的一部分知识,故这里的nginx就需要使用虚拟主机并且配置https证书,且具有php解析功能。 1.1 基础nginx配置 #1.创建web目录 mkdir …...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...

认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...