当前位置: 首页 > news >正文

ubuntu22.04下使用conda安装pytorch(cpu及gpu版本)

本文介绍了conda下安装cpu、gpu版本的pytorch;并介绍了如何设置镜像源

ubuntu环境安装pytorch的CPU版本与GPU版本

系统:ubuntu22.04
显卡:RTX 3050
依赖工具:miniconda

确认环境

lsb_release -a
No LSB modules are available.
Distributor ID:	Ubuntu
Description:	Ubuntu 22.04.3 LTS
Release:	22.04
Codename:	jammy
$ nvidia-smi
Tue Feb 13 21:51:33 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.154.05             Driver Version: 535.154.05   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 3050 ...    Off | 00000000:02:00.0 Off |                  N/A |
| N/A   48C    P3               7W /  35W |    435MiB /  4096MiB |     11%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|    0   N/A  N/A      1854      G   /usr/lib/xorg/Xorg                          226MiB |
|    0   N/A  N/A      2225      G   /usr/bin/gnome-shell                         84MiB |
|    0   N/A  N/A      3199      G   ...irefox/2987/usr/lib/firefox/firefox       95MiB |
|    0   N/A  N/A     48808      G   ...resh,SpareRendererForSitePerProcess       21MiB |
+---------------------------------------------------------------------------------------+
$ conda --version
conda 23.11.0

使用conda安装pytorch(CPU版本)

注意:默认conda安装pytorch的是cpu版本,如需要安装GPU版本的,注意直接看后面

创建一个新conda环境
$ conda create -n myPyt

新创建的环境不包含任何依赖可以使用conda list查看一下

开始安装pytorch(当然,也可以前面在创建环境的同时,把依赖包一同时安装了)

$ conda install pytorch

为了方便验证同时安装ipython

IPython 是 Python 的原生交互式 shell 的增强版,可以完成许多不同寻常的任务,比如帮助实现并行化计算;主要使用它提供的交互性帮助,比如代码着色、改进了的命令行回调、制表符完成、宏功能以及改进了的交互式帮助

# 激活环境
$ conda activate myPyt
# 安装ipython
$ conda install ipython
验证一下pytorch环境

输入ipython,进入交互式环境,依次输入如下两条命令import torchtorch.cuda.is_available()

$ ipython
Python 3.11.7 (main, Dec 15 2023, 18:12:31) [GCC 11.2.0]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.20.0 -- An enhanced Interactive Python. Type '?' for help.In [1]: import torchIn [2]: torch.cuda.is_available()
Out[2]: False

发现当前的版本是不cpu版本,不支持cuda加速的,我们查看一下依赖

$ conda list
# packages in environment at /home/bing/miniconda3/envs/myEnv:                                                                                                       
#                                                                                                                                                                    
# Name                    Version                   Build  Channel                                                                                                   
_libgcc_mutex             0.1                        main                                                                                                            
_openmp_mutex             5.1                       1_gnu                                                                                                            
blas                      1.0                         mkl                                                                                                            
bzip2                     1.0.8                h7b6447c_0                                                                                                            
ca-certificates           2023.12.12           h06a4308_0                                                                                                            
cffi                      1.16.0          py311h5eee18b_0                                                                                                            
filelock                  3.13.1          py311h06a4308_0                                                                                                            
fsspec                    2023.10.0       py311h06a4308_0                                                                                                            
gmp                       6.2.1                h295c915_3                                                                                                            
gmpy2                     2.1.2           py311hc9b5ff0_0                                                                                                            
intel-openmp              2023.1.0         hdb19cb5_46306                                                                                                            
jinja2                    3.1.3           py311h06a4308_0                                                                                                            
ld_impl_linux-64          2.38                 h1181459_1                                                                                                            
libffi                    3.4.4                h6a678d5_0                                                                                                            
libgcc-ng                 11.2.0               h1234567_1                                                                                                            
libgomp                   11.2.0               h1234567_1                                                                                                            
libprotobuf               3.20.3               he621ea3_0                                                                                                            
libstdcxx-ng              11.2.0               h1234567_1                                                                                                            
libuuid                   1.41.5               h5eee18b_0                                                                                                            
markupsafe                2.1.3           py311h5eee18b_0                                                                                                            
mkl                       2023.1.0         h213fc3f_46344                                                                                                            
mkl-service               2.4.0           py311h5eee18b_1  
mkl_fft                   1.3.8           py311h5eee18b_0  
mkl_random                1.2.4           py311hdb19cb5_0  
mpc                       1.1.0                h10f8cd9_1  
mpfr                      4.0.2                hb69a4c5_1  
mpmath                    1.3.0           py311h06a4308_0  
ncurses                   6.4                  h6a678d5_0  
networkx                  3.1             py311h06a4308_0  
ninja                     1.10.2               h06a4308_5  
ninja-base                1.10.2               hd09550d_5  
numpy                     1.26.3          py311h08b1b3b_0  
numpy-base                1.26.3          py311hf175353_0  
openssl                   3.0.13               h7f8727e_0  
pip                       23.3.1          py311h06a4308_0  
pycparser                 2.21               pyhd3eb1b0_0  
python                    3.11.7               h955ad1f_0  
pytorch                   2.1.0           cpu_py311h6d93b4c_0  
readline                  8.2                  h5eee18b_0  
setuptools                68.2.2          py311h06a4308_0  
sqlite                    3.41.2               h5eee18b_0  
sympy                     1.12            py311h06a4308_0  
tbb                       2021.8.0             hdb19cb5_0  
tk                        8.6.12               h1ccaba5_0  
typing-extensions         4.9.0           py311h06a4308_1  
typing_extensions         4.9.0           py311h06a4308_1  
tzdata                    2023d                h04d1e81_0  
wheel                     0.41.2          py311h06a4308_0  
xz                        5.4.5                h5eee18b_0  
zlib                      1.2.13               h5eee18b_0 

发现确实没安装任何cuda库,而pytorch的版本我们也可以看到确实cpu版本pytorch 2.1.0 cpu_py311h6d93b4c_0

conda安装GPU版本的pytorch

如何安装gpu版本的pytorch呢?我们继续
我们查看一下pytorch可安装的版本

$ conda search pytorch
Loading channels: done
# Name                       Version           Build  Channel
...
pytorch                       1.13.1 gpu_cuda113py39h0809116_0  pkgs/main           
pytorch                       1.13.1 gpu_cuda113py39h09dffc6_0  pkgs/main           
pytorch                       1.13.1 gpu_cuda113py39h926b89d_1  pkgs/main           
pytorch                       1.13.1 gpu_cuda113py39hde3f150_1  pkgs/main           
pytorch                        2.0.1 cpu_py310hab5cca8_0  pkgs/main           
pytorch                        2.0.1 cpu_py310hdc00b08_0  pkgs/main           
pytorch                        2.0.1 cpu_py311h53e38e9_0  pkgs/main           
pytorch                        2.0.1 cpu_py311h6d93b4c_0  pkgs/main           
pytorch                        2.0.1 cpu_py38hab5cca8_0  pkgs/main           
pytorch                        2.0.1 cpu_py38hdc00b08_0  pkgs/main           
pytorch                        2.0.1 cpu_py39hab5cca8_0  pkgs/main           
pytorch                        2.0.1 cpu_py39hdc00b08_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py310h7799f5a_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py310he342708_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py311h7668aad_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py311hce0f3bd_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py38h7799f5a_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py38he342708_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py39h7799f5a_0  pkgs/main           
pytorch                        2.0.1 gpu_cuda118py39he342708_0  pkgs/main           
pytorch                        2.1.0 cpu_py310hab5cca8_0  pkgs/main           
pytorch                        2.1.0 cpu_py310hdc00b08_0  pkgs/main           
pytorch                        2.1.0 cpu_py311h53e38e9_0  pkgs/main           
pytorch                        2.1.0 cpu_py311h6d93b4c_0  pkgs/main           
pytorch                        2.1.0 cpu_py38hab5cca8_0  pkgs/main           
pytorch                        2.1.0 cpu_py38hdc00b08_0  pkgs/main           
pytorch                        2.1.0 cpu_py39hab5cca8_0  pkgs/main           
pytorch                        2.1.0 cpu_py39hdc00b08_0  pkgs/main 

我们可以看到,2.1.0版本的,Build列中,有点的cpu有的是gpu,那么如何安装时指定安装带gpu表示的版本的呢?

我们只需制定版本号的同时,指定build即可

$ conda create -n pyt-gpu
$ conda activate pyt-gpu
$ conda install pytorch=2.0.1=gpu_cuda118py39he342708_0
...
The following NEW packages will be INSTALLED:_libgcc_mutex      pkgs/main/linux-64::_libgcc_mutex-0.1-main _openmp_mutex      pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu blas               pkgs/main/linux-64::blas-1.0-mkl ca-certificates    pkgs/main/linux-64::ca-certificates-2023.12.12-h06a4308_0 cffi               pkgs/main/linux-64::cffi-1.16.0-py39h5eee18b_0 cudatoolkit        pkgs/main/linux-64::cudatoolkit-11.8.0-h6a678d5_0 cudnn              pkgs/main/linux-64::cudnn-8.9.2.26-cuda11_0 cupti              pkgs/main/linux-64::cupti-11.8.0-he078b1a_0 filelock           pkgs/main/linux-64::filelock-3.13.1-py39h06a4308_0 gmp                pkgs/main/linux-64::gmp-6.2.1-h295c915_3 gmpy2              pkgs/main/linux-64::gmpy2-2.1.2-py39heeb90bb_0 intel-openmp       pkgs/main/linux-64::intel-openmp-2023.1.0-hdb19cb5_46306 jinja2             pkgs/main/linux-64::jinja2-3.1.3-py39h06a4308_0 ld_impl_linux-64   pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1 libffi             pkgs/main/linux-64::libffi-3.4.4-h6a678d5_0 libgcc-ng          pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1 libgomp            pkgs/main/linux-64::libgomp-11.2.0-h1234567_1 libprotobuf        pkgs/main/linux-64::libprotobuf-3.20.3-he621ea3_0 libstdcxx-ng       pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1 magma              pkgs/main/linux-64::magma-2.7.1-h2c23e93_0 markupsafe         pkgs/main/linux-64::markupsafe-2.1.3-py39h5eee18b_0 mkl                pkgs/main/linux-64::mkl-2023.1.0-h213fc3f_46344 mkl-service        pkgs/main/linux-64::mkl-service-2.4.0-py39h5eee18b_1 mkl_fft            pkgs/main/linux-64::mkl_fft-1.3.8-py39h5eee18b_0 mkl_random         pkgs/main/linux-64::mkl_random-1.2.4-py39hdb19cb5_0 mpc                pkgs/main/linux-64::mpc-1.1.0-h10f8cd9_1 mpfr               pkgs/main/linux-64::mpfr-4.0.2-hb69a4c5_1 mpmath             pkgs/main/linux-64::mpmath-1.3.0-py39h06a4308_0 ncurses            pkgs/main/linux-64::ncurses-6.4-h6a678d5_0 networkx           pkgs/main/linux-64::networkx-3.1-py39h06a4308_0 ninja              pkgs/main/linux-64::ninja-1.10.2-h06a4308_5 ninja-base         pkgs/main/linux-64::ninja-base-1.10.2-hd09550d_5 numpy              pkgs/main/linux-64::numpy-1.26.3-py39h5f9d8c6_0 numpy-base         pkgs/main/linux-64::numpy-base-1.26.3-py39hb5e798b_0 openssl            pkgs/main/linux-64::openssl-3.0.13-h7f8727e_0 pip                pkgs/main/linux-64::pip-23.3.1-py39h06a4308_0 pycparser          pkgs/main/noarch::pycparser-2.21-pyhd3eb1b0_0 python             pkgs/main/linux-64::python-3.9.18-h955ad1f_0 pytorch            pkgs/main/linux-64::pytorch-2.0.1-gpu_cuda118py39he342708_0 readline           pkgs/main/linux-64::readline-8.2-h5eee18b_0 setuptools         pkgs/main/linux-64::setuptools-68.2.2-py39h06a4308_0 sqlite             pkgs/main/linux-64::sqlite-3.41.2-h5eee18b_0 sympy              pkgs/main/linux-64::sympy-1.12-py39h06a4308_0 tbb                pkgs/main/linux-64::tbb-2021.8.0-hdb19cb5_0 tk                 pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0 typing-extensions  pkgs/main/linux-64::typing-extensions-4.9.0-py39h06a4308_1 typing_extensions  pkgs/main/linux-64::typing_extensions-4.9.0-py39h06a4308_1 tzdata             pkgs/main/noarch::tzdata-2023d-h04d1e81_0 wheel              pkgs/main/linux-64::wheel-0.41.2-py39h06a4308_0 xz                 pkgs/main/linux-64::xz-5.4.5-h5eee18b_0 zlib               pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0 
Proceed ([y]/n)? 

安装时,从提示安装的依赖我们可以看出,这个版本确实带上了cuda相关包cudatoolkitcudnn,这次安装显然时间长了很多,包的大小也近2G

安装完成后,我们再次确认一下cuda加速是否可用;

同样,我们先安装一个ipython

$ conda install ipython

进入ipython后,依次执行如下代码import torchtorch.cuda.is_available()

$ ipython
Python 3.9.18 (main, Sep 11 2023, 13:41:44) 
Type 'copyright', 'credits' or 'license' for more information
IPython 8.15.0 -- An enhanced Interactive Python. Type '?' for help.In [1]: import torchIn [2]: torch.cuda.is_available()
Out[2]: True

这次cuda可以正常工作,到此完成gpu版本的pytorch安装

当然不是采用conda安装的话,希望自己手鲁,从nvidia驱动、cuda、cudnn这些库开始手动一个个安装好后,最后再安装pytorch也是可以的;关于pytorch手动安装方式,这里给出官方地址,点这里

最后再安装个jupyter工具conda install jupyter
启动命令jupyter-notebook

相关文章:

ubuntu22.04下使用conda安装pytorch(cpu及gpu版本)

本文介绍了conda下安装cpu、gpu版本的pytorch;并介绍了如何设置镜像源 ubuntu环境安装pytorch的CPU版本与GPU版本 系统:ubuntu22.04 显卡:RTX 3050 依赖工具:miniconda 确认环境 lsb_release -a No LSB modules are available.…...

突破编程_C++_高级教程(模板编程的基础知识)

1 模板编程的基本概念 C 的模板编程是一种编程技术,它允许程序员编写处理不同类型数据的通用代码。通过使用模板,可以创建与特定数据类型无关的函数或类,这些函数或类在编译时可以根据需要生成特定数据类型的版本。这增加了代码的复用性、灵…...

胆小勿入!AI创作恐怖电影宣传片《生化危机:重生》

胆小勿入!AI创作恐怖电影宣传片《生化危机:重生》 "The city is falling, and the dead walk among us." "In the shadow of the apocalypse, the fight for survival begins." "The streets are silent, but the nightmare …...

HTTP 超文本传送协议

1 超文本传送协议 HTTP HTTP 是面向事务的 (transaction-oriented) 应用层协议。 使用 TCP 连接进行可靠的传送。 定义了浏览器与万维网服务器通信的格式和规则。 是万维网上能够可靠地交换文件(包括文本、声音、图像等各种多媒体文件)的重要基础。 H…...

MySQL导入/导出数据

MySQL导入/导出数据 文章目录 MySQL导入/导出数据一、MySQL 导入数据1、mysql 命令导入2、source 命令导入3、使用 LOAD DATA 导入数据4、使用 mysqlimport 导入数据4.1、mysqlimport的常用选项介绍 二、MySQL 导出数据1、使用 SELECT ... INTO OUTFILE 语句导出数据2、mysqldu…...

Matplotlib初探:认识数据可视化与Matplotlib

Matplotlib初探:认识数据可视化与Matplotlib Fig.1 利用Matplotlib进行数据可视化( 可视化代码见文末) 🌵文章目录🌵 🌳引言🌳🌳一、数据可视化简介🌳🌳二、Matplotlib库简介&#x…...

LeetCode 0987.二叉树的垂序遍历:遍历时存节点信息,遍历完自定义排序

【LetMeFly】987.二叉树的垂序遍历:遍历时存节点信息,遍历完自定义排序 力扣题目链接:https://leetcode.cn/problems/vertical-order-traversal-of-a-binary-tree/ 给你二叉树的根结点 root ,请你设计算法计算二叉树的 垂序遍历…...

TCP 和 UDP的区别

文章目录 概述区别UDPTCPTCP与UDP的选择UDP和TCP编程区别 概述 TCP(Transmission Control Protocol,传输控制协议)和 UDP(User Datagram Protocol,用户数据报协议)是互联网中两种最常用的传输层协议 总的来…...

Python 将一维数组或矩阵变为三维

Python 将一维数组或矩阵变为三维 正文 正文 话不多说直接上代码: import numpy as npsampling_points 10001arr np.linspace(0, 2, sampling_points) arr_3D arr.reshape(1, 1, -1) print(arr_3D) """ result: [[[0.0000e00 2.0000e-04 4.0000…...

Python如何实现定时发送qq消息

因为生活中老是忘记各种事情,刚好又在学python,便突发奇想通过python实现提醒任务的功能(尽管TIM有定时功能),也可定时给好友、群、讨论组发送qq消息。其工作流程是:访问数据库提取最近计划——>根据数据…...

支付方式接入:支付宝、微信支付、微软支付

支付方式接入:支付宝、微信支付、微软支付 1、微信支付-接入指引 2、支付宝-接入指引 3、微软支付-接入指引 3.1、使用visual studio打包应用(发布到微软市场):Package a desktop app from source code using Visual Studio -…...

C++中的互斥量

互斥量是一个类&#xff0c;互斥量的使用必须引入头文件#include <mutex>。互斥量就如同一把锁&#xff0c;在同一时间&#xff0c;多个线程都可以调用lock成员函数尝试给这把锁头加锁&#xff0c;但是只有一个线程可以成功给这把锁加锁&#xff0c;其他没有加锁成功的线…...

盲盒小程序开发

现如今&#xff0c;盲盒已经成为了市场上不可忽视的新型消费模式&#xff0c;并且也逐渐遍布在全球各地中。盲盒的种类商品也逐渐丰富完善&#xff0c;不在局限于性价比高的盲盒玩具、手办等&#xff0c;也发展到了美妆、电子、食品等行业&#xff0c;具有较大的实用性和收藏价…...

安装 Windows 10

1.镜像安装 镜像安装:安装Windows 10 2.安装过程(直接以图的形式呈现) 选择专业版的 等待安装即可...

C++文件操作->文本文件(->写文件、读文件)、二进制文件(->写文件、读文件)

#include<iostream> using namespace std; #include <fstream>//头文件包含 //文本文件 写文件 void test01() { //1.包含头文件 fstream //2.创建流对象 ofstream ofs; //3.指定打开方式 ofs.open("test.txt", ios::out); //4.写…...

Mac相关问题

Mac 更新node版本 第一步&#xff0c;先查看本机node.js版本&#xff1a; node -v 第二步&#xff0c;清除node.js的cache&#xff1a; sudo npm cache clean -f 第三步&#xff0c;安装 n 工具&#xff0c;这个工具是专门用来管理node.js版本的&#xff0c;别怀疑这个工具…...

Python爬虫之Splash详解

爬虫专栏&#xff1a;http://t.csdnimg.cn/WfCSx Splash 的使用 Splash 是一个 JavaScript 渲染服务&#xff0c;是一个带有 HTTP API 的轻量级浏览器&#xff0c;同时它对接了 Python 中的 Twisted 和 QT 库。利用它&#xff0c;我们同样可以实现动态渲染页面的抓取。 1. 功…...

Deep深度系统下载安装Beyond compare4

Beyond Compare 4下载和安装 1、在线安装 Debian, Ubuntu安装命令&#xff1a; wget https://www.scootersoftware.com/bcompare-4.4.6.27483_amd64.deb sudo apt update sudo apt install ./bcompare-4.4.6.27483_amd64.deb Redhat Enterprise Linux, Fedora, CentOS安装命令…...

Qt 使用QScintilla 编辑lua 脚本

需求&#xff1a; 利用QScintilla 编辑lua 脚本 步骤&#xff1a; 1&#xff0c;下载 QScintilla Riverbank Computing | Download 2, 打开 src/qscintilla.pro 文件 编译出 dll库 3&#xff0c;工程中引入这个库 注意debug 模式 必须加载debug 版本编译的库&#xff0…...

2022长安杯复现

案件情况 某地警方接到受害人报案称其在某虚拟币交易网站遭遇诈骗&#xff0c;该网站号称使用“USTD 币”购买所谓的“HT 币”&#xff0c;受害人充 值后不但“HT 币”无法提现、交易&#xff0c;而且手机还被恶意软件锁定 勒索。警方根据受害人提供的虚拟币交易网站调取了对应…...

Netty Review - NioEventLoopGroup源码解析

文章目录 概述类继承关系源码分析小结 概述 EventLoopGroup bossGroup new NioEventLoopGroup(1); EventLoopGroup workerGroup new NioEventLoopGroup();这段代码是在使用Netty框架时常见的用法&#xff0c;用于创建两个不同的EventLoopGroup实例&#xff0c;一个用于处理连…...

团队配置管理规范浅见

在一段时间的工作过程中配置管理工作确实对我们的生产活动产生了巨大的工作量&#xff0c;现在就这个工作来进行梳理一下。 本文主要分为两部分&#xff1a; 1、借用软件系统分析师的配置管理部分内容来介绍配置管理的工作&#xff08;原谅时间精力有限&#xff0c;原文基本已…...

「算法」二分查找1:理论细节

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;算法详解 &#x1f387;欢迎点赞收藏加关注哦&#xff01; 二分查找算法简介 这个算法的特点就是&#xff1a;细节多&#xff0c;出错率高&#xff0c;很容易就写成死循环有模板&#xff0c;但…...

【网络安全】什么样的人适合学?该怎么学?

有很多想要转行网络安全或者选择网络安全专业的人在进行决定之前一定会有的问题&#xff1a; 什么样的人适合学习网络安全&#xff1f;我适不适合学习网络安全&#xff1f; 当然&#xff0c;产生这样的疑惑并不奇怪&#xff0c;毕竟网络安全这个专业在2017年才调整为国家一级…...

从零开始学习数据结构—【链表】—【探索环形链的设计之美】

环形链表 文章目录 环形链表1.结构图2.具体实现2.1.环形链表结构2.2.头部添加数据2.2.1.具体实现2.2.2.测试添加数据 2.3.尾部添加数据2.3.1.具体实现2.3.2.添加测试数据 2.4.删除头部数据2.4.1.具体实现2.4.2.测试删除数据 2.5.删除尾部数据2.5.1.具体实现2.5.2.测试删除数据 …...

AJAX——HTTP协议

1 HTTP协议-请求报文 HTTP协议&#xff1a;规定了浏览器发送及服务器返回内容的格式 请求报文&#xff1a;浏览器按照HTTP协议要求的格式&#xff0c;发送给服务器的内容 1.1 请求报文的格式 请求报文的组成部分有&#xff1a; 请求行&#xff1a;请求方法&#xff0c;URL…...

java面试微服务篇

目录 目录 SpringCloud Spring Cloud 的5大组件 服务注册 Eureka Nacos Eureka和Nacos的对比 负载均衡 负载均衡流程 Ribbon负载均衡策略 自定义负载均衡策略 熔断、降级 服务雪崩 服务降级 服务熔断 服务监控 为什么需要监控 服务监控的组件 skywalking 业务…...

JS进阶——垃圾回收机制以及算法

版权声明 本文章来源于B站上的某马课程&#xff0c;由本人整理&#xff0c;仅供学习交流使用。如涉及侵权问题&#xff0c;请立即与本人联系&#xff0c;本人将积极配合删除相关内容。感谢理解和支持&#xff0c;本人致力于维护原创作品的权益&#xff0c;共同营造一个尊重知识…...

【快速解决】python项目打包成exe文件——vscode软件

目录 操作步骤 1、打开VSCode并打开你的Python项目。 2、在VSCode终端中安装pyinstaller&#xff1a; 3、运行以下命令使用pyinstaller将Python项目打包成exe文件&#xff1a; 其中your_script.py是你的Python脚本的文件名。 4、打包完成后&#xff0c;在你的项目目录中会…...

数据结构——lesson3单链表介绍及实现

目录 1.什么是链表&#xff1f; 2.链表的分类 &#xff08;1&#xff09;无头单向非循环链表&#xff1a; &#xff08;2&#xff09;带头双向循环链表&#xff1a; 3.单链表的实现 &#xff08;1&#xff09;单链表的定义 &#xff08;2&#xff09;动态创建节点 &#…...