当前位置: 首页 > news >正文

清华AutoGPT:掀起AI新浪潮,与GPT4.0一较高下

引言:

        随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了一个又一个突破。最近,清华大学研发的AutoGPT成为了业界的焦点。这款AI模型以其出色的性能,展现了中国在AI领域的强大实力。

目录

引言:

一、清华AutoGPT简介

二、清华AutoGPT与GPT4.0的比较

三、简单问答与代码示例

问答:

代码示例:

使用清华AutoGPT进行文本生成:

使用GPT4.0进行文本生成: 


一、清华AutoGPT简介

  •         清华AutoGPT是一款基于Transformer架构的自然语言处理模型,它采用了大规模的语料库进行训练,具备了强大的语言理解和生成能力。该模型可以自动回答各种问题,生成流畅、连贯的文本,甚至能够完成一些复杂的创作任务,如写作、翻译等。 


二、清华AutoGPT与GPT4.0的比较

  • 模型规模:GPT4.0作为OpenAI的最新一代模型,拥有庞大的参数规模,达到了惊人的数千亿级别。而清华AutoGPT虽然在参数规模上略逊一筹,但其优化算法和训练策略使得其在性能方面并不逊色于GPT4.0。
  • 训练数据:GPT4.0的训练数据涵盖了多个领域,从网络文本到专业文献,其多样性为模型赋予了更广泛的应用场景。而清华AutoGPT则更注重中文语境下的训练数据,这使得它在处理中文任务时更具优势。
  • 应用领域:GPT4.0在多个领域都展现出了强大的应用潜力,如自然语言生成、对话系统、机器翻译等。而清华AutoGPT则更侧重于中文领域的应用,如智能客服、文学创作、教育辅导等。

三、简单问答与代码示例

问答:
  • 问:清华AutoGPT和GPT4.0哪个更适合中文任务?

:对于中文任务而言,清华AutoGPT可能更具优势。由于它更注重中文语境下的训练数据,因此在处理中文文本时可能更加准确和流畅。然而,GPT4.0作为一个全球性的模型,其多语言处理能力也非常强大,对于跨语言的任务同样表现出色。

代码示例:
使用清华AutoGPT进行文本生成:
from autogpt import AutoGPT  # 初始化AutoGPT模型  
model = AutoGPT()  # 输入提示文本  
prompt = "请写一篇关于清华AutoGPT的文章。"  # 生成文本  
generated_text = model.generate(prompt)  print(generated_text)

使用GPT4.0进行文本生成: 
from transformers import GPT4LMHeadModel, GPT4Tokenizer  # 加载GPT4模型和分词器  
model = GPT4LMHeadModel.from_pretrained("gpt4")  
tokenizer = GPT4Tokenizer.from_pretrained("gpt4")  # 输入提示文本  
prompt = "Write an article about GPT4."  # 对提示文本进行分词  
input_ids = tokenizer(prompt, return_tensors="pt").input_ids  # 生成文本  
generated_ids = model.generate(input_ids)  
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)  print(generated_text)

        清华AutoGPTGPT4.0作为自然语言处理领域的杰出代表,各自在不同方面展现出了强大的实力。随着AI技术的不断进步,我们有理由相信,未来的自然语言处理领域将更加丰富多彩,为人类带来更多便利和创新。

相关文章:

清华AutoGPT:掀起AI新浪潮,与GPT4.0一较高下

引言: 随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了一个又一个突破。最近,清华大学研发的AutoGPT成为了业界的焦点。这款AI模型以其出色的性能,展现了中国在AI领域的强大实力。 目录 引言&…...

人工智能学习与实训笔记(二):神经网络之图像分类问题

人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 目录 二、图像分类问题 2.1 尝试使用全连接神经网络 2.2 引入卷积神经网络 2.3 分类函数Softmax 2.4 交叉熵损失函数 2.5 学习率优化算法 2.6 图像预处理算法 2.6.1 随机改变亮暗、对比度和颜色等 …...

SSM框架,spring-aop的学习

代理模式 二十三种设计模式中的一种,属于结构型模式。它的作用就是通过提供一个代理类,让我们在调用目标方法的时候,不再是直接对目标方法进行调用,而是通过代理类间接调用。让不属于目标方法核心逻辑的代码从目标方法中剥离出来…...

【设计模式】4、策略模式

文章目录 一、问题二、解决方案2.1 真实世界的类比2.2 策略模式结构2.3 适用场景2.4 实现方式2.5 优缺点2.6 与其他模式的关系 三、示例代码3.1 go3.2 rust 策略模式是一种行为设计模式,它能定义一系列算法,把每种算法分别放入独立的类中,以是…...

【C++学习手札】多态:掌握面向对象编程的动态绑定与继承机制(深入)

🎬慕斯主页:修仙—别有洞天 ♈️今日夜电波:世界上的另一个我 1:02━━━━━━️💟──────── 3:58 🔄 ◀️ ⏸ ▶️ ☰ &am…...

【机构vip教程】Android SDK手机测试环境搭建

Android SDK 的安装和环境变量的配置 前置条件:需已安装 jdk1.8及 以上版本 1、下载Android SDK,解压后即可(全英文路径);下载地址:http://tools.android-studio.org/index.php/sdk 2、新建一个环境变量&…...

2024.2.18

使用fgets统计给定文件的行数 #include<stdio.h> #include<string.h> int main(int argc, const char *argv[]) {FILE *fpNULL;if((fpfopen("./test.txt","w"))NULL){perror("open err");return -1;}fputc(h,fp);fputc(\n,fp);fput…...

Haproxy实验

环境: servera(Haproxy):192.168.233.132 serverb(web1):192.168.233.144 serverc(web2):192.168.233.140 serverd(客户端):192.168.233.141 servera(Haproxy): yum install haproxy -y vim /etc/haproxy/haproxy.cfg(配置文件) # 设置日志&#…...

CSRNET图像修复,DNN

CSRNET图像修复 CSRNET图像修复&#xff0c;只需要OPENCV的DNN...

004 - Hugo, 分类

004 - Hugo, 分类content文件夹 004 - Hugo, 分类 content文件夹 ├─.obsidian ├─categories │ ├─Python │ └─Test ├─page │ ├─about │ ├─archives │ ├─links │ └─search └─post├─chinese-test├─emoji-support├─Git教程├─Hugo分类├─…...

Vue3之ElementPlus中Table选中数据的获取与清空方法

Vue3之ElementPlus中Table选中数据的获取与清空方法 文章目录 Vue3之ElementPlus中Table选中数据的获取与清空方法1. 点击按钮获取与清空选中表格的数据1. 用到ElementPlus中Table的两个方法2. 业务场景3. 操作案例 1. 点击按钮获取与清空选中表格的数据 1. 用到ElementPlus中…...

Leetcode 516.最长回文子序列

题意理解&#xff1a; 给你一个字符串 s &#xff0c;找出其中最长的回文子序列&#xff0c;并返回该序列的长度。 子序列定义为&#xff1a;不改变剩余字符顺序的情况下&#xff0c;删除某些字符或者不删除任何字符形成的一个序列。 回文理解为元素对称的字串&#xff0c;这里…...

cool Node后端 中实现中间件的书写

1.需求 在node后端中&#xff0c;想实现一个专门鉴权的文件配置&#xff0c;可以这样来解释 就是 有些接口需要token调用接口&#xff0c;有些接口不需要使用token 调用 这期来详细说明一下 什么是中间件中间件顾名思义是指在请求和响应中间,进行请求数据的拦截处理&#xf…...

Leecode之面试题消失的数字

一.题目及剖析 https://leetcode.cn/problems/missing-number-lcci/description/ 数组nums包含从0到n的所有整数&#xff0c;但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗&#xff1f; 注意&#xff1a;本题相对书上原题稍作改动 示例 1&…...

STM32的三种下载方式

结果jlink&#xff0c;串口&#xff0c;stlink方式都没有问题&#xff0c;是当时缩减代码&#xff0c;看真正起作用的代码段有哪些&#xff0c;就把GPIO初始化中 /*开启GPIO外部时钟*/RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA, ENABLE); 把开启外部时钟的代码注释掉了。…...

华为 huawei 交换机 接口 MAC 地址学习限制接入用户数量 配置示例

目录 组网需求: 配置思路&#xff1a; 操作步骤&#xff1a; 配置文件&#xff1a; 组网需求: 如 图 2-14 所示&#xff0c;用户网络 1 和用户网络 2 通过 LSW 与 Switch 相连&#xff0c; Switch 连接 LSW 的接口为GE0/0/1 。用户网络 1 和用户网络 2 分别属于 VLAN10 和 V…...

使用Python生成二维码的完整指南

无边落木萧萧下&#xff0c;不如跟着可莉一起游~ 可莉将这篇博客收录在了&#xff1a;《Python》 可莉推荐的优质博主首页&#xff1a;Kevin ’ s blog 本文将介绍如何使用Python中的qrcode库来生成二维码。通过简单的代码示例和详细解释&#xff0c;读者将学习如何在Python中轻…...

排序前言冒泡排序

目录 排序应用 常见的排序算法 BubbleSort冒泡排序 整体思路 图解分析 ​ 代码实现 每趟 写法1 写法2 代码NO1 代码NO2优化 时间复杂度 排序概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递…...

红队笔记Day3-->隧道上线不出网机器

昨天讲了通过代理的形式&#xff08;端口转发&#xff09;实现了上线不出网的机器&#xff0c;那么今天就来讲一下如何通过隧道上线不出网机器 目录 1.网络拓扑 2.开始做隧道&#xff1f;No&#xff01;&#xff01;&#xff01; 3.icmp隧道 4.HTTP隧道 5.SSH隧道 1.什么…...

C 练习实例70-求字符串长度

题目&#xff1a;写一个函数&#xff0c;求一个字符串的长度&#xff0c;在 main 函数中输入字符串&#xff0c;并输出其长度。 解答&#xff1a; #include <stdio.h> int length(char *s); int main() {int len;char str[20];printf("请输入字符串:\n");scan…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

【技巧】dify前端源代码修改第一弹-增加tab页

回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码&#xff0c;在知识库增加一个tab页"HELLO WORLD"&#xff0c;完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…...

JUC并发编程(二)Monitor/自旋/轻量级/锁膨胀/wait/notify/锁消除

目录 一 基础 1 概念 2 卖票问题 3 转账问题 二 锁机制与优化策略 0 Monitor 1 轻量级锁 2 锁膨胀 3 自旋 4 偏向锁 5 锁消除 6 wait /notify 7 sleep与wait的对比 8 join原理 一 基础 1 概念 临界区 一段代码块内如果存在对共享资源的多线程读写操作&#xf…...