LeetCode刷题小记 一、【数组】
LeetCode刷题小记 一、【数组】
文章目录
- LeetCode刷题小记 一、【数组】
- 写在前面
- 1. 数组
- 1.1 理论基础
- 1.2 二分查找
- 1.3 移除元素
- 1.4 有序数组的平方
- 1.5 长度最小的子数组
- 1.6 螺旋矩阵II
- Reference
写在前面
本系列笔记主要作为笔者刷题的题解,所用的语言为Python3
,若于您有助,不胜荣幸。
1. 数组
1.1 理论基础
数组[array]是一种线性的数据结构,将相同的数据类型存储在连续的内存空间当中,我们将元素在数组中的位置称为该元素的索引[index]。由于数组是连续存储的特性,我们访问其中单个元素变得十分容易,我们只需要知道其索引就能访问其中的元素,索引本质上是内存地址的偏移量。
由于数组中元素的连续存在的,因此要在数组中插入、删除元素,需要移动后续的所有元素。所以数组的各项操作的时间复杂度如下
Operation | Time Complexity |
---|---|
插入、删除 | O ( n ) \mathcal{O}(n) O(n) |
查找 | O ( 1 ) \mathcal{O}(1) O(1) |
1.2 二分查找
704二分查找
二分查找的前提是有序数组(升序或者降序),且无重复元素。
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
二分查找的第一种写法是要定义在一个左闭右闭的区间里,[left, right]
,所以终止条件就可以写为:while (left <= right)
class Solution:def search(self, nums: List[int], target: int) -> int:left: int = 0right: int = len(nums) - 1 #左闭右闭while left <= right:mid: int = (left + right) // 2if target > nums[mid]:left = mid + 1elif target < nums[mid]:right = mid - 1else:return midreturn -1
- 时间复杂度: O ( log n ) \mathcal{O}(\log n) O(logn)
- 空间复杂度: O ( 1 ) \mathcal{O}(1) O(1)
第二种写法是将其定义在一个左闭右开的区间,[left, right)
当中,所以终止条件必须写为:while (left < right)
class Solution:def search(self, nums: List[int], target: int) -> int:left: int = 0right: int = len(nums) #左闭右开while left < right:mid: int = left + (right - left) // 2if target > nums[mid]:left = mid + 1elif target < nums[mid]:right = midelse:return midreturn -1
35搜索插入位置
class Solution:def searchInsert(self, nums: List[int], target: int) -> int:left: int = 0right: int = len(nums)-1while left <= right:mid = left + (right - left) // 2if nums[mid] > target:right = mid - 1elif nums[mid] < target:left = mid + 1else:return midreturn left
34在排序数组中查找元素的第一个和最后一个位置
# 1、首先,在 nums 数组中二分查找 target;
# 2、如果二分查找失败,则 binarySearch 返回 -1,表明 nums 中没有 target。此时,searchRange 直接返回 {-1, -1};
# 3、如果二分查找成功,则 binarySearch 返回 nums 中值为 target 的一个下标。然后,通过左右滑动指针,来找到符合题意的区间
class Solution:def searchRange(self, nums: List[int], target: int) -> List[int]:def binarySearch(nums: List[int], target: int) -> int:left: int = 0right: int = len(nums) - 1while left <= right:mid = left + (right - left) // 2if nums[mid] > target:right = mid - 1elif nums[mid] < target:left = mid + 1else:return midreturn -1index = binarySearch(nums, target)if index == -1: return [-1, -1]left = right = indexwhile left - 1 >= 0 and nums[left - 1] == target: left -= 1while right + 1 <= len(nums) - 1 and nums[right+1] == target: right += 1return [left, right]
69x的平方根
class Solution:def mySqrt(self, x: int) -> int:if x == 0 or x == 1:return xleft: int = 1right: int = xres: int = -1while left <= right:mid = left + (right - left) // 2if mid * mid <= x: # 平方更要小于等于当前的x所以,这里用<=来限制区间res = midleft = mid + 1else:right = mid - 1return res
367有效的完全平方数
class Solution:def isPerfectSquare(self, num: int) -> bool:left: int = 1right: int = numwhile left <= right:mid = left + (right - left)//2if mid * mid > num:right = mid - 1elif mid * mid < num:left = mid + 1else:return Truereturn False
1.3 移除元素
27移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。
可以使用双指针法:通过一个快指针和慢指针在一个for循环中完成两个for循环的工作。
定义快慢指针:
- 快指针:寻找新数组的元素,新数组就是不含有目标元素的数组,如果快指针指向的元素不等于
val
,那么它一定是输出数组中的元素,所以将其赋值给慢指针的位置 - 慢指针:指向更新,新数组的下标位置,如果快指针指向的元素等于
val
,说明它不是输出数组中的元素,我们直接移动快指针即可
双指针的方法,在处理数组和链表的操作当中都是非常常见的。
class Solution:def removeElement(self, nums: List[int], val: int) -> int:slowIndex: int = 0for fastIndex in range(len(nums)):if nums[fastIndex] != val:nums[slowIndex] = nums[fastIndex]slowIndex += 1return slowIndexclass Solution:def removeElement(self, nums: List[int], val: int) -> int:slowIndex: int = 0fastIndex: int = 0while fastIndex < len(nums):if nums[fastIndex] != val:nums[slowIndex] = nums[fastIndex]slowIndex += 1fastIndex += 1return slowIndex
26删除有序数组中的重复项
class Solution:def removeDuplicates(self, nums: List[int]) -> int:fastIndex: int = 1slowIndex: int = 0while fastIndex <= len(nums) - 1:if nums[slowIndex] == nums[fastIndex]:fastIndex += 1elif nums[slowIndex] != nums[fastIndex]:slowIndex += 1nums[slowIndex] = nums[fastIndex]return slowIndex + 1
283移动零
class Solution:def moveZeroes(self, nums: List[int]) -> None:"""Do not return anything, modify nums in-place instead."""slowIndex: int = 0fastIndex: int = 0while fastIndex <= len(nums) - 1:if nums[fastIndex] != 0:nums[slowIndex] = nums[fastIndex]slowIndex += 1fastIndex += 1for i in range(slowIndex, fastIndex):nums[i] = 0
1.4 有序数组的平方
977有序数组的平方
给你一个按 非递减顺序 排序的整数数组 nums
,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
思路,该数组已经知道为有序数组,那么数组的中间值的平方一定是最小的,最大值一定是从两侧值的平方中进行选取,所以我们可以使用左右指针开始查找。
class Solution:def sortedSquares(self, nums: List[int]) -> List[int]:leftIndex: int = 0rightIndex: int = len(nums) - 1resIndex: int = len(nums) - 1res: List[any] = [float('inf')] * len(nums)while leftIndex <= rightIndex:elem1 = nums[leftIndex] ** 2elem2 = nums[rightIndex] ** 2if elem1 >= elem2:res[resIndex] = elem1leftIndex += 1else:res[resIndex] = elem2rightIndex -= 1resIndex -= 1return res
1.5 长度最小的子数组
209长度最小的子数组
给定一个含有 n
个正整数的数组和一个正整数 target
。
找出该数组中满足其总和大于等于 target
的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr]
,并返回其长度**。**如果不存在符合条件的子数组,返回 0
。
本题采用的思想是,滑动窗口,滑动窗口可以分为最大滑动窗口和最小滑动窗口,具体的区别在于最大滑动窗口目的在于最大化满足条件的区间长度,而最小化滑动窗口目的在于最小化满足条件的区间长度。
最小滑窗模板:给定数组 nums,定义滑窗的左右边界 i, j,求满足某个条件的滑窗的最小长度。
while j < len(nums):判断[i, j]是否满足条件while 满足条件:不断更新结果(注意在while内更新!)i += 1 (最大程度的压缩i,使得滑窗尽可能的小)j += 1
最大滑窗模板:给定数组 nums,定义滑窗的左右边界 i, j,求满足某个条件的滑窗的最大长度。
while j < len(nums):判断[i, j]是否满足条件while 不满足条件:i += 1 (最保守的压缩i,一旦满足条件了就退出压缩i的过程,使得滑窗尽可能的大)不断更新结果(注意在while外更新!)j += 1
class Solution:def minSubArrayLen(self, target: int, nums: List[int]) -> int:startIndex: int = 0result: any = float('inf')s: int = 0for endIndex in range(len(nums)):s += nums[endIndex]while s >= target:result = min(result, endIndex - startIndex + 1)s -= nums[startIndex]startIndex += 1return result if result != float('inf') else 0
defaultdict的用法
python中的defaultdict
是collections
库中的一种字典,与python中默认字典dict
的区别在于,我们可以指定defaultdict
当访问到不存在的key
是的返回值,比如
from collections import defaultdict
d1 = defaultdict(int) #设置d1访问不存在的key时返回0
d2 = defaultdict(list) #设置d2访问不存在的key时返回空列表[]
d2 = defaultdict(bool) #设置d3访问不存在的key时返回False
print(d1['a'])
print(d2['a'])
print(d3['a'])
返回的结果为
0
[]
False
904. 水果成篮
class Solution:def totalFruit(self, fruits: List[int]) -> int:left: int = 0right: int = 0result: int = 0classMap: dict = defaultdict(int) #访问不存在的key返回0classCnt: int = 0while right <= len(fruits) - 1:# 判断是否满足情况if classMap[fruits[right]] == 0:classCnt += 1classMap[fruits[right]] += 1# 当不满情况的时候才对left进行移动,这样能够保证滑动窗口为最大while classCnt > 2:if classMap[fruits[left]] == 1:classCnt -= 1classMap[fruits[left]] -= 1 left += 1# 结果在外面进行更新result = max(result, right - left + 1)right += 1return result
76. 最小覆盖子串
给你一个字符串 s
、一个字符串 t
。返回 s
中涵盖 t
所有字符的最小子串。如果 s
中不存在涵盖 t
所有字符的子串,则返回空字符串 ""
。
class Solution:def minWindow(self, s: str, t: str) -> str:left: int = 0right: int = 0strMap: dict = collections.defaultdict(int) #访问不存在的key时返回0strCnt: int = len(t)result: str = ''for char in t:strMap[char] += 1# 移动右边界while right <= len(s) - 1:# 判断当前字母是否被需要if s[right] in strMap:if strMap[s[right]] > 0:strCnt -= 1strMap[s[right]] -= 1# 压缩左边界while strCnt == 0:# 更新resultif not result or right - left + 1 < len(result):result = s[left: right + 1]# 判断当前字母是否可压缩if s[left] in strMap:if strMap[s[left]] == 0:strCnt += 1strMap[s[left]] += 1left += 1right += 1return result
1.6 螺旋矩阵II
59. 螺旋矩阵 II
给你一个正整数 n
,生成一个包含 1
到 n2
所有元素,且元素按顺时针顺序螺旋排列的 n x n
正方形矩阵 matrix
。
这道题的重点在于确定循环不变量,我们要保证每次循环的写法的区间都具有一致性,所以我们在这里采用左闭右开
的方式来进行循环。
class Solution:def generateMatrix(self, n: int) -> List[List[int]]:nums: List[List[int]] = [[0] * n for _ in range(n)]startx: int = 0starty: int = 0loop: int = n // 2count: int = 1offset: int = 1for _ in range(loop):for j in range(starty, n - offset):nums[startx][j] = countcount += 1for i in range(startx, n - offset):nums[i][n - offset] = countcount += 1for j in range(n - offset, starty, -1):nums[n - offset][j] = countcount += 1for i in range(n - offset, startx, -1):nums[i][starty] = countcount += 1startx += 1starty += 1offset += 1if n % 2 == 1:nums[n // 2][n // 2] = countreturn nums
54. 螺旋矩阵
给你一个 m
行 n
列的矩阵 matrix
,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。
class Solution:def spiralOrder(self, matrix: List[List[int]]) -> List[int]:m: int = len(matrix)n: int = len(matrix[0])loop: int = min(m, n) // 2print(loop)startx: int = 0starty: int = 0offset: int = 1res: List[int] = []for _ in range(loop):for j in range(starty, n - offset):res.append(matrix[startx][j])for i in range(startx, m - offset):res.append(matrix[i][n - offset])for j in range(n - offset, starty, -1):res.append(matrix[m - offset][j])for i in range(m - offset, startx, -1):res.append(matrix[i][starty])startx += 1starty += 1offset += 1if min(m, n) % 2 == 1:if m <= n:for j in range(starty, n - (offset-1)): #注意这里转完一圈之后offset实际上是被+1了,我们需要还原上一圈中的offsetres.append(matrix[startx][j])else:for i in range(startx, m - (offset-1)):res.append(matrix[i][starty])return res
Reference
[1] Hello 算法
[2] 代码随想录
相关文章:

LeetCode刷题小记 一、【数组】
LeetCode刷题小记 一、【数组】 文章目录 LeetCode刷题小记 一、【数组】写在前面1. 数组1.1 理论基础1.2 二分查找1.3 移除元素1.4 有序数组的平方1.5 长度最小的子数组1.6 螺旋矩阵II Reference 写在前面 本系列笔记主要作为笔者刷题的题解,所用的语言为Python3&…...

iOS总体框架介绍和详尽说明
iOS是由苹果公司开发的移动操作系统,为iPhone、iPad、iPod Touch等设备提供支持。iOS采用了基于Unix的核心(称为Darwin),并采用了类似于Mac OS X的图形用户界面。以下是iOS的总体框架介绍和详尽说明: UIKit框架&#…...

【C++】const与constexpr详解
1. constexpr:常量表达式 所谓常量表达式,指的就是由多个(≥1)常量组成的表达式。换句话说,如果表达式中的成员都是常量,那么该表达式就是一个常量表达式。这也意味着,常量表达式一旦确定,其值将无法修改。 实际开发中,我们经常会…...

蓝桥杯:日期统计讲解(C++)
日期统计 本题来自于:2023年十四届省赛大学B组真题 主要考察:暴力。 代码放在下面,代码中重要的细节全都写了注释,非常清晰明了: #include <bits/stdc.h> //万能头文件 using namespace std;int main() {…...

Python re.findall()中的正则表达式包含多个括号时的返回值——包含元组的列表
当re.findall()中的正则表达式包含多个括号时,返回值是一个列表,其中每个元素都是一个元组。这个元组的长度与正则表达式中括号的数量相同,元组中的每个元素都是与相应括号中的模式匹配的文本。 import re # 定义一个包含三个括号的正则表达…...

Python——列表
一、列表的特性介绍 列表和字符串⼀样也是序列类型的数据 列表内的元素直接⽤英⽂的逗号隔开,元素是可变的,所以列表是可变的数据类型,⽽字符串不是。 列表的元素可以是 Python 中的任何类型的数据对象。如:字符串、…...

无人机图像识别技术研究及应用,无人机AI算法技术理论,无人机飞行控制识别算法详解
在现代科技领域中,无人机技术是一个备受瞩目的领域。随着人们对无人机应用的需求在不断增加,无人机技术也在不断发展和改进。在众多的无人机技术中,无人机图像识别技术是其中之一。 无人机图像识别技术是利用计算机视觉技术对无人机拍摄的图像…...

清华AutoGPT:掀起AI新浪潮,与GPT4.0一较高下
引言: 随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了一个又一个突破。最近,清华大学研发的AutoGPT成为了业界的焦点。这款AI模型以其出色的性能,展现了中国在AI领域的强大实力。 目录 引言&…...

人工智能学习与实训笔记(二):神经网络之图像分类问题
人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 目录 二、图像分类问题 2.1 尝试使用全连接神经网络 2.2 引入卷积神经网络 2.3 分类函数Softmax 2.4 交叉熵损失函数 2.5 学习率优化算法 2.6 图像预处理算法 2.6.1 随机改变亮暗、对比度和颜色等 …...

SSM框架,spring-aop的学习
代理模式 二十三种设计模式中的一种,属于结构型模式。它的作用就是通过提供一个代理类,让我们在调用目标方法的时候,不再是直接对目标方法进行调用,而是通过代理类间接调用。让不属于目标方法核心逻辑的代码从目标方法中剥离出来…...

【设计模式】4、策略模式
文章目录 一、问题二、解决方案2.1 真实世界的类比2.2 策略模式结构2.3 适用场景2.4 实现方式2.5 优缺点2.6 与其他模式的关系 三、示例代码3.1 go3.2 rust 策略模式是一种行为设计模式,它能定义一系列算法,把每种算法分别放入独立的类中,以是…...

【C++学习手札】多态:掌握面向对象编程的动态绑定与继承机制(深入)
🎬慕斯主页:修仙—别有洞天 ♈️今日夜电波:世界上的另一个我 1:02━━━━━━️💟──────── 3:58 🔄 ◀️ ⏸ ▶️ ☰ &am…...

【机构vip教程】Android SDK手机测试环境搭建
Android SDK 的安装和环境变量的配置 前置条件:需已安装 jdk1.8及 以上版本 1、下载Android SDK,解压后即可(全英文路径);下载地址:http://tools.android-studio.org/index.php/sdk 2、新建一个环境变量&…...

2024.2.18
使用fgets统计给定文件的行数 #include<stdio.h> #include<string.h> int main(int argc, const char *argv[]) {FILE *fpNULL;if((fpfopen("./test.txt","w"))NULL){perror("open err");return -1;}fputc(h,fp);fputc(\n,fp);fput…...

Haproxy实验
环境: servera(Haproxy):192.168.233.132 serverb(web1):192.168.233.144 serverc(web2):192.168.233.140 serverd(客户端):192.168.233.141 servera(Haproxy): yum install haproxy -y vim /etc/haproxy/haproxy.cfg(配置文件) # 设置日志&#…...

CSRNET图像修复,DNN
CSRNET图像修复 CSRNET图像修复,只需要OPENCV的DNN...

004 - Hugo, 分类
004 - Hugo, 分类content文件夹 004 - Hugo, 分类 content文件夹 ├─.obsidian ├─categories │ ├─Python │ └─Test ├─page │ ├─about │ ├─archives │ ├─links │ └─search └─post├─chinese-test├─emoji-support├─Git教程├─Hugo分类├─…...

Vue3之ElementPlus中Table选中数据的获取与清空方法
Vue3之ElementPlus中Table选中数据的获取与清空方法 文章目录 Vue3之ElementPlus中Table选中数据的获取与清空方法1. 点击按钮获取与清空选中表格的数据1. 用到ElementPlus中Table的两个方法2. 业务场景3. 操作案例 1. 点击按钮获取与清空选中表格的数据 1. 用到ElementPlus中…...

Leetcode 516.最长回文子序列
题意理解: 给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。 子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。 回文理解为元素对称的字串,这里…...

cool Node后端 中实现中间件的书写
1.需求 在node后端中,想实现一个专门鉴权的文件配置,可以这样来解释 就是 有些接口需要token调用接口,有些接口不需要使用token 调用 这期来详细说明一下 什么是中间件中间件顾名思义是指在请求和响应中间,进行请求数据的拦截处理…...

Leecode之面试题消失的数字
一.题目及剖析 https://leetcode.cn/problems/missing-number-lcci/description/ 数组nums包含从0到n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗? 注意:本题相对书上原题稍作改动 示例 1&…...

STM32的三种下载方式
结果jlink,串口,stlink方式都没有问题,是当时缩减代码,看真正起作用的代码段有哪些,就把GPIO初始化中 /*开启GPIO外部时钟*/RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA, ENABLE); 把开启外部时钟的代码注释掉了。…...

华为 huawei 交换机 接口 MAC 地址学习限制接入用户数量 配置示例
目录 组网需求: 配置思路: 操作步骤: 配置文件: 组网需求: 如 图 2-14 所示,用户网络 1 和用户网络 2 通过 LSW 与 Switch 相连, Switch 连接 LSW 的接口为GE0/0/1 。用户网络 1 和用户网络 2 分别属于 VLAN10 和 V…...

使用Python生成二维码的完整指南
无边落木萧萧下,不如跟着可莉一起游~ 可莉将这篇博客收录在了:《Python》 可莉推荐的优质博主首页:Kevin ’ s blog 本文将介绍如何使用Python中的qrcode库来生成二维码。通过简单的代码示例和详细解释,读者将学习如何在Python中轻…...

排序前言冒泡排序
目录 排序应用 常见的排序算法 BubbleSort冒泡排序 整体思路 图解分析 代码实现 每趟 写法1 写法2 代码NO1 代码NO2优化 时间复杂度 排序概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递…...

红队笔记Day3-->隧道上线不出网机器
昨天讲了通过代理的形式(端口转发)实现了上线不出网的机器,那么今天就来讲一下如何通过隧道上线不出网机器 目录 1.网络拓扑 2.开始做隧道?No!!! 3.icmp隧道 4.HTTP隧道 5.SSH隧道 1.什么…...

C 练习实例70-求字符串长度
题目:写一个函数,求一个字符串的长度,在 main 函数中输入字符串,并输出其长度。 解答: #include <stdio.h> int length(char *s); int main() {int len;char str[20];printf("请输入字符串:\n");scan…...

HarmonyOS—@State装饰器:组件内状态
State装饰的变量,或称为状态变量,一旦变量拥有了状态属性,就和自定义组件的渲染绑定起来。当状态改变时,UI会发生对应的渲染改变。 在状态变量相关装饰器中,State是最基础的,使变量拥有状态属性的装饰器&a…...

Linux系统——防火墙拓展及重点理解
目录 一、iptables 1.基本语法 2.四表五链——重点记忆 2.1四表 2.2五链 2.3总结 3.iptables选项示例 3.1 -Z 清空流量计数 3.2 -P 修改默认规则 3.3 -D 删除规则 3.4 -R 指定编号替换规则 5.白名单 6.通用匹配 7.示例 7.1添加回环网卡 7.2可以访问端口 7.3 主…...

阿里云短信验证码的两个坑
其它都参照官网即可,其中有两个坑需要注意: 1、除去官网pom引用的包之外,还需要引用以下包: <dependency><groupId>org.apache.httpcomponents.client5</groupId><artifactId>httpclient5</artifact…...