当前位置: 首页 > news >正文

通俗易懂的L0范数和L1范数及其Python实现

定义

L0 范数(L0-Norm)

L0 范数并不是真正意义上的一个范数,因为它不满足范数的三角不等式性质,但它在数学优化和信号处理等领域有着实际的应用。L0 范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为:

[ |x|_0 = \text{number of non-zero elements in } x ]

例如,向量 (x = [1, 0, 2, 0, 3]) 的 L0 范数是 3,因为该向量中有三个非零元素。

L1 范数(L1-Norm)

L1 范数也被称作曼哈顿距离或者稀疏规则算子(lasso regularization)。它是向量中所有元素的绝对值之和。L1 范数会偏向产生少量的特征,而其他的特征都是0,能够用于特征选择,常用于稀疏编码、压缩感知等领域。数学上表示为:

[ |x|1 = \sum{i=1}^{n} |x_i| ]

例如,向量 (x = [1, -2, 3]) 的 L1 范数就是 (|1| + |-2| + |3| = 6),即向量中各元素绝对值之和。

Python 示例

我们现在使用 Python 来计算一个向量的 L0 范数和 L1 范数。

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 21:55:07 2024@author: 李立宗公众号:计算机视觉之光知识星球:计算机视觉之光"""import numpy as np# 定义一个向量
x = np.array([1, -2, 0, 3])# 计算 L0 范数(非零元素的个数)
l0_norm = np.count_nonzero(x)# 计算 L1 范数(元素绝对值的和)
l1_norm = np.sum(np.abs(x))print("L0 范数:", l0_norm)
print("L1 范数:", l1_norm)

这段代码首先导入了 NumPy 库,并定义了一个向量 x。然后,它使用 np.count_nonzero 函数来计算非零元素的个数,即 L0 范数。接着,该代码使用 np.sum 函数和 np.abs 函数来计算所有元素的绝对值之和,即 L1 范数。最后,两个范数的结果被打印出来。

在这里插入图片描述

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述

相关文章:

通俗易懂的L0范数和L1范数及其Python实现

定义 L0 范数(L0-Norm) L0 范数并不是真正意义上的一个范数,因为它不满足范数的三角不等式性质,但它在数学优化和信号处理等领域有着实际的应用。L0 范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为…...

如何在30天内使用python制作一个卡牌游戏

如何在30天内使用python制作一个卡牌游戏 第1-5天:规划和设计第6-10天:搭建游戏框架第11-20天:核心游戏机制开发第21-25天:游戏界面和用户体验第26-30天:测试和发布附加建议游戏类型游戏规则设计界面设计技术选型第6-…...

VsCode指定插件安装目录

VsCode指定插件安装目录 VsCode安装的默认目录是在用户目录(%HomePath%)下的.vscode文件夹下的extensions目录下,随着安装插件越来越多会占用大量C盘空间。 指定VsCode的插件目录 Vscode安装目录: D:\Microsoft VS Code\Code.exeVscode插件安装目录&a…...

解决npm淘宝镜像到期问题

1 背景 由于node安装插件是从国外服务器下载,如果没有“特殊手法”,就可能会遇到下载速度慢、或其它异常问题。 所以如果npm的服务器在中国就好了,于是我们乐于分享的淘宝团队干了这事。你可以用此只读的淘宝服务代替官方版本,且…...

【JAVA】java泛型 详解

java泛型 详解 一、参数化类型(Parameterized Type):二. 泛型类(Generic Class):三. 泛型方法(Generic Method):四. 通配符类型(Wildcard Type)&a…...

基于RBAC的权限管理的理论实现和权限管理的实现

权限管理的理论 首先需要两个页面支持,分别是角色管理和员工管理,其中角色管理对应的是角色和权限的配合,员工管理则是将登录的员工账号和员工所处的角色进行对应,即通过新增角色这个概念,让权限和员工并不直接关联&a…...

Atcoder ABC340 C - Divide and Divide

Divide and Divide(分而治之) 时间限制:2s 内存限制:1024MB 【原题地址】 所有图片源自Atcoder,题目译文源自脚本Atcoder Better! 点击此处跳转至原题 【问题描述】 【输入格式】 【输出格式】 【样例1】 【样例…...

趣学贝叶斯统计:概率密度分布(probability density function)

目录 1. 分布:PDF与PMFPDFPMF 2. 将概率密度函数应用于我们的问题用积分量化连续分布积分度量变化率:导数 3. R语言实践4. 小结 1. 分布:PDF与PMF PDF PDF定义在连续值上。在连续型随机变量的情况下,具体取某个数值的概率是0,因此PDF并不直…...

伦敦金行情分析需要学习吗?

对于伦敦金交易来说,目前大致分成两派,一派是实干派,认为做伦敦金交易重要的是实战,不需要学习太多东西,否则容易被理论知识所局限。另一派则是强调学习,没有理论知识,投资者很难做好伦敦金交易…...

Java实现停车场收费系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 停车位模块2.2 车辆模块2.3 停车收费模块2.4 IC卡模块2.5 IC卡挂失模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 停车场表3.2.2 车辆表3.2.3 停车收费表3.2.4 IC 卡表3.2.5 IC 卡挂失表 四、系统实现五、核心代码…...

服务器遭受 DDoS 攻击的常见迹象有哪些?

服务器遭受 DDoS 攻击的现象很常见,并且有时不容易预防,有部分原因是它们的形式多种多样,而且黑客手段越来越隐蔽。如果您怀疑自己可能遭受 DDoS 攻击,可以寻找多种迹象。以下是 DDoS 攻击的5个常见迹象: 1.网络流量无…...

【机器学习笔记】 15 机器学习项目流程

机器学习的一般步骤 数据清洗 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 探索性数据分析(EDA 探索性数据…...

【C语言】位操作符与移位操作符练习

目录 前言: 1.一道变态的面试题 2.输入一个整数 n ,输出该数32位二进制表示中1的个数。其中负数用补码表示。 方法一: 方法二: 方法三: 3.打印整数二进制的奇数位和偶数位 前言: 前篇我们学习过C语言…...

第十四届“中关村青联杯”全国研究生数学建模竞赛-A题:无人机在抢险救灾中的优化运用

目录 摘 要: 1 问题重述 1.1 问题背景 1.2 待解决的问题 2 模型假设及符号说明...

Android 9.0 Launcher3桌面显示多个相同app图标的解决办法

1.前言 在9.0的系统ROM定制化开发中,在Launcher3的系统原生桌面中,在显示桌面的时候,在禁用和启用app的功能测试的时候,会发现有多个相同app的图标显示在桌面 这对Launcher3的体验效果不是很好,所以为了优化产品,需要解决这个bug,然后让产品更完善 2.桌面显示多个相同…...

WordPress主题YIA在广告位添加图片广告时下方有空白怎么办?

YIA主题设置中默认有4个广告位,而侧边栏的广告位由站长自行添加。boke112百科在这些广告位添加图片广告后发现图片下方有空白,导致下方的两个角没有变圆角,看起来也有点不好看。具体如下图所示: 其实,这个问题就是典型…...

5.15 BCC工具之kvm_hypercall.py解读

一,工具简介 在该示例中,我们可以了解到如何使用eBPF(扩展BPF,Berkeley Packet Filter的扩展)和bcc(BPF Compiler Collection)来分析KVM(Kernel-based Virtual Machine)中的超级调用(hypercall)。 即当exit_reason为VMCALL时,有状态的kvm_entry和kvm_exit记录以及…...

git 解除本地分支与其它分支(远程分支)的关联

开发中,我在同事的分支开一条分支,并将同事的分支作为关联分支,前两天还好,我一个人在干活,然而第3天,同事回来了,他在他那条分支也开发,这时就会出现2种情况, 1. 同时修…...

conda 所有的命令及其讲解

Conda 是一个开源的包管理器和环境管理器,可以用于安装、运行和升级跨平台的软件包和环境。Conda 很流行于数据科学、机器学习、科学计算等领域,因为它能够快速地安装、管理和部署软件包和环境。以下是 Conda 的一些主要命令及其简要说明: 环…...

mysql 数据库主从复制搭建

MySQL 主从复制主要用于实现高可用性和备份。在主从复制中,一个 MySQL 实例(称为主节点)将其数据更改复制到至少一个其他 MySQL 实例(称为从节点)上。主要借助于数据库二进制日志binlog进行数据的复制。 主从数据库对应…...

vscode里如何用git

打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率&#xff0c…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...