当前位置: 首页 > news >正文

通俗易懂的L0范数和L1范数及其Python实现

定义

L0 范数(L0-Norm)

L0 范数并不是真正意义上的一个范数,因为它不满足范数的三角不等式性质,但它在数学优化和信号处理等领域有着实际的应用。L0 范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为:

[ |x|_0 = \text{number of non-zero elements in } x ]

例如,向量 (x = [1, 0, 2, 0, 3]) 的 L0 范数是 3,因为该向量中有三个非零元素。

L1 范数(L1-Norm)

L1 范数也被称作曼哈顿距离或者稀疏规则算子(lasso regularization)。它是向量中所有元素的绝对值之和。L1 范数会偏向产生少量的特征,而其他的特征都是0,能够用于特征选择,常用于稀疏编码、压缩感知等领域。数学上表示为:

[ |x|1 = \sum{i=1}^{n} |x_i| ]

例如,向量 (x = [1, -2, 3]) 的 L1 范数就是 (|1| + |-2| + |3| = 6),即向量中各元素绝对值之和。

Python 示例

我们现在使用 Python 来计算一个向量的 L0 范数和 L1 范数。

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 21:55:07 2024@author: 李立宗公众号:计算机视觉之光知识星球:计算机视觉之光"""import numpy as np# 定义一个向量
x = np.array([1, -2, 0, 3])# 计算 L0 范数(非零元素的个数)
l0_norm = np.count_nonzero(x)# 计算 L1 范数(元素绝对值的和)
l1_norm = np.sum(np.abs(x))print("L0 范数:", l0_norm)
print("L1 范数:", l1_norm)

这段代码首先导入了 NumPy 库,并定义了一个向量 x。然后,它使用 np.count_nonzero 函数来计算非零元素的个数,即 L0 范数。接着,该代码使用 np.sum 函数和 np.abs 函数来计算所有元素的绝对值之和,即 L1 范数。最后,两个范数的结果被打印出来。

在这里插入图片描述

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述

相关文章:

通俗易懂的L0范数和L1范数及其Python实现

定义 L0 范数(L0-Norm) L0 范数并不是真正意义上的一个范数,因为它不满足范数的三角不等式性质,但它在数学优化和信号处理等领域有着实际的应用。L0 范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为…...

如何在30天内使用python制作一个卡牌游戏

如何在30天内使用python制作一个卡牌游戏 第1-5天:规划和设计第6-10天:搭建游戏框架第11-20天:核心游戏机制开发第21-25天:游戏界面和用户体验第26-30天:测试和发布附加建议游戏类型游戏规则设计界面设计技术选型第6-…...

VsCode指定插件安装目录

VsCode指定插件安装目录 VsCode安装的默认目录是在用户目录(%HomePath%)下的.vscode文件夹下的extensions目录下,随着安装插件越来越多会占用大量C盘空间。 指定VsCode的插件目录 Vscode安装目录: D:\Microsoft VS Code\Code.exeVscode插件安装目录&a…...

解决npm淘宝镜像到期问题

1 背景 由于node安装插件是从国外服务器下载,如果没有“特殊手法”,就可能会遇到下载速度慢、或其它异常问题。 所以如果npm的服务器在中国就好了,于是我们乐于分享的淘宝团队干了这事。你可以用此只读的淘宝服务代替官方版本,且…...

【JAVA】java泛型 详解

java泛型 详解 一、参数化类型(Parameterized Type):二. 泛型类(Generic Class):三. 泛型方法(Generic Method):四. 通配符类型(Wildcard Type)&a…...

基于RBAC的权限管理的理论实现和权限管理的实现

权限管理的理论 首先需要两个页面支持,分别是角色管理和员工管理,其中角色管理对应的是角色和权限的配合,员工管理则是将登录的员工账号和员工所处的角色进行对应,即通过新增角色这个概念,让权限和员工并不直接关联&a…...

Atcoder ABC340 C - Divide and Divide

Divide and Divide(分而治之) 时间限制:2s 内存限制:1024MB 【原题地址】 所有图片源自Atcoder,题目译文源自脚本Atcoder Better! 点击此处跳转至原题 【问题描述】 【输入格式】 【输出格式】 【样例1】 【样例…...

趣学贝叶斯统计:概率密度分布(probability density function)

目录 1. 分布:PDF与PMFPDFPMF 2. 将概率密度函数应用于我们的问题用积分量化连续分布积分度量变化率:导数 3. R语言实践4. 小结 1. 分布:PDF与PMF PDF PDF定义在连续值上。在连续型随机变量的情况下,具体取某个数值的概率是0,因此PDF并不直…...

伦敦金行情分析需要学习吗?

对于伦敦金交易来说,目前大致分成两派,一派是实干派,认为做伦敦金交易重要的是实战,不需要学习太多东西,否则容易被理论知识所局限。另一派则是强调学习,没有理论知识,投资者很难做好伦敦金交易…...

Java实现停车场收费系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 停车位模块2.2 车辆模块2.3 停车收费模块2.4 IC卡模块2.5 IC卡挂失模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 停车场表3.2.2 车辆表3.2.3 停车收费表3.2.4 IC 卡表3.2.5 IC 卡挂失表 四、系统实现五、核心代码…...

服务器遭受 DDoS 攻击的常见迹象有哪些?

服务器遭受 DDoS 攻击的现象很常见,并且有时不容易预防,有部分原因是它们的形式多种多样,而且黑客手段越来越隐蔽。如果您怀疑自己可能遭受 DDoS 攻击,可以寻找多种迹象。以下是 DDoS 攻击的5个常见迹象: 1.网络流量无…...

【机器学习笔记】 15 机器学习项目流程

机器学习的一般步骤 数据清洗 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 探索性数据分析(EDA 探索性数据…...

【C语言】位操作符与移位操作符练习

目录 前言: 1.一道变态的面试题 2.输入一个整数 n ,输出该数32位二进制表示中1的个数。其中负数用补码表示。 方法一: 方法二: 方法三: 3.打印整数二进制的奇数位和偶数位 前言: 前篇我们学习过C语言…...

第十四届“中关村青联杯”全国研究生数学建模竞赛-A题:无人机在抢险救灾中的优化运用

目录 摘 要: 1 问题重述 1.1 问题背景 1.2 待解决的问题 2 模型假设及符号说明...

Android 9.0 Launcher3桌面显示多个相同app图标的解决办法

1.前言 在9.0的系统ROM定制化开发中,在Launcher3的系统原生桌面中,在显示桌面的时候,在禁用和启用app的功能测试的时候,会发现有多个相同app的图标显示在桌面 这对Launcher3的体验效果不是很好,所以为了优化产品,需要解决这个bug,然后让产品更完善 2.桌面显示多个相同…...

WordPress主题YIA在广告位添加图片广告时下方有空白怎么办?

YIA主题设置中默认有4个广告位,而侧边栏的广告位由站长自行添加。boke112百科在这些广告位添加图片广告后发现图片下方有空白,导致下方的两个角没有变圆角,看起来也有点不好看。具体如下图所示: 其实,这个问题就是典型…...

5.15 BCC工具之kvm_hypercall.py解读

一,工具简介 在该示例中,我们可以了解到如何使用eBPF(扩展BPF,Berkeley Packet Filter的扩展)和bcc(BPF Compiler Collection)来分析KVM(Kernel-based Virtual Machine)中的超级调用(hypercall)。 即当exit_reason为VMCALL时,有状态的kvm_entry和kvm_exit记录以及…...

git 解除本地分支与其它分支(远程分支)的关联

开发中,我在同事的分支开一条分支,并将同事的分支作为关联分支,前两天还好,我一个人在干活,然而第3天,同事回来了,他在他那条分支也开发,这时就会出现2种情况, 1. 同时修…...

conda 所有的命令及其讲解

Conda 是一个开源的包管理器和环境管理器,可以用于安装、运行和升级跨平台的软件包和环境。Conda 很流行于数据科学、机器学习、科学计算等领域,因为它能够快速地安装、管理和部署软件包和环境。以下是 Conda 的一些主要命令及其简要说明: 环…...

mysql 数据库主从复制搭建

MySQL 主从复制主要用于实现高可用性和备份。在主从复制中,一个 MySQL 实例(称为主节点)将其数据更改复制到至少一个其他 MySQL 实例(称为从节点)上。主要借助于数据库二进制日志binlog进行数据的复制。 主从数据库对应…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...