当前位置: 首页 > news >正文

【感知算法】Dempster-Shafer理论(下)

尝试DS理论应用到自动驾驶地图众包更新。

地图特征变化判断

a mass function is applied to quantify the evidence of the existence.
existence state: existenct、non-existent、tenative、conflict
∃ ∄ Ω ϕ \exist \\ \not\exist \\ \Omega \\ \phi Ωϕ
mass function: quantify the evidence of the existence.

  • mass functions of the measurement

m a s s z t ( ∃ ) = λ m a s s z t ( ∄ ) = 0 m a s s z t ( ϕ ) = 0 m a s s z t ( Ω ) = 1 − λ mass_{z_t}( \exist ) = \lambda \\ mass_{z_t}( \not \exist ) = 0 \\ mass_{z_t}( \phi ) = 0 \\ mass_{z_t}( \Omega ) = 1-\lambda masszt()=λmasszt()=0masszt(ϕ)=0masszt(Ω)=1λ

  • mass functions of the non-measurement

m a s s z t ( ∃ ) = 0 m a s s z t ( ∄ ) = λ m a s s z t ( ϕ ) = 0 m a s s z t ( Ω ) = 1 − λ mass_{z_t}( \exist ) = 0 \\ mass_{z_t}( \not \exist ) = \lambda \\ mass_{z_t}( \phi ) = 0 \\ mass_{z_t}( \Omega ) = 1-\lambda masszt()=0masszt()=λmasszt(ϕ)=0masszt(Ω)=1λ

Inference of the map feature existence based Dempster Combination Rule

  • mass functions of map features and new map features
    初始化使用第i个地图特征的先验置信度 λ H D \lambda_{HD} λHD

m a s s H D 0 { i } ( ∃ ) = λ H D m a s s H D 0 { i } ( ∄ ) = 0 m a s s H D 0 { i } ( ϕ ) = 0 m a s s H D 0 { i } ( Ω ) = 1 − λ H D mass_{HD_{0\{i\}}}( \exist ) = \lambda_{HD} \\ mass_{HD_{0\{i\}}}( \not \exist ) = 0 \\ mass_{HD_{0\{i\}}}( \phi ) = 0 \\ mass_{HD_{0\{i\}}}( \Omega ) = 1 - \lambda_{HD} massHD0{i}()=λHDmassHD0{i}()=0massHD0{i}(ϕ)=0massHD0{i}(Ω)=1λHD

新增加的第j个地图特征,按下列式初始化
m a s s n e w 0 { j } ( ∃ ) = 0 m a s s n e w 0 { j } ( ∄ ) = 0 m a s s n e w 0 { j } ( ϕ ) = 0 m a s s n e w 0 { j } ( Ω ) = 1 mass_{new_{0\{j\}}}( \exist ) = 0 \\ mass_{new_{0\{j\}}}( \not \exist ) = 0 \\ mass_{new_{0\{j\}}}( \phi ) = 0 \\ mass_{new_{0\{j\}}}( \Omega ) = 1 \\ massnew0{j}()=0massnew0{j}()=0massnew0{j}(ϕ)=0massnew0{j}(Ω)=1

  • Usd Dempster combination rule ⊕ \oplus to accumulate the measurement existence m a s s z t mass_{z_t} massztto the each map feature existence at time t − 1 t-1 t1

m a s s H D t { i } = m a s s H D t − 1 { i } ⊕ m a s s z t m a s s n e w t { j } = m a s s n e w t − 1 { j } ⊕ m a s s z t mass_{HD_{t\{i\}}} = mass_{HD_{t-1\{i\}}}\oplus mass_{z_t} \\ mass_{new_{t\{j\}}} = mass_{new_{t-1\{j\}}}\oplus mass_{z_t} massHDt{i}=massHDt1{i}massztmassnewt{j}=massnewt1{j}masszt

其中,
m a s s 1 ⊕ 2 ( A ) = m a s s 1 ∩ 2 ( A ) 1 − m a s s 1 ∩ 2 ( ϕ ) , ∀ A ⊆ Ω , A ≠ ϕ m a s s 1 ⊕ 2 ( ϕ ) = 0 ∀ A ⊆ Ω , m a s s 1 ∩ 2 ( A ) = ∑ B ∩ C = A ∣ B , C ⊆ Ω m a s s 1 ( B ) m a s s 2 ( C ) mass_{1\oplus2}(A) = \frac{mass_{1\cap2}(A)}{1-mass_{1\cap2}(\phi)}, \forall A\subseteq\Omega,A\neq\phi \\ mass_{1\oplus2}(\phi) = 0 \\ \forall A\subseteq\Omega, mass_{1\cap2}(A) = \sum_{B\cap C=A|B,C\subseteq\Omega}mass_1(B)mass_2(C) mass12(A)=1mass12(ϕ)mass12(A),AΩ,A=ϕmass12(ϕ)=0AΩ,mass12(A)=BC=AB,CΩmass1(B)mass2(C)
注:公式 m a s s 1 ⊕ 2 ( A ) mass_{1\oplus2}(A) mass12(A) m a s s 1 ( A ) ⊕ m a s s 2 ( A ) mass_{1}(A)\oplus mass_2(A) mass1(A)mass2(A)
求和条件中的 ∣ | 为并列含义, Ω \Omega Ω为超集 2 X 2^X 2X
∃ ∩ ∃ = ∃ ∃ ∩ Ω = ∃ ∃ ∩ ∄ = ∅ ∅ ∩ ∃ = ∅ ∅ ∩ ∄ = ∅ ∅ ∩ Ω = ∅ ∅ ∩ ∅ = ∅ \exist \cap \exist = \exist\\ \exist \cap \Omega = \exist\\ \exist \cap \not\exist = \emptyset \\ \emptyset \cap \exist = \emptyset \\ \emptyset \cap \not \exist = \emptyset \\ \emptyset \cap \Omega = \emptyset \\ \emptyset \cap \emptyset = \emptyset \\ =Ω====Ω==
集合运算满足交换律。

相关文章:

【感知算法】Dempster-Shafer理论(下)

尝试DS理论应用到自动驾驶地图众包更新。 地图特征变化判断 a mass function is applied to quantify the evidence of the existence. existence state: existenct、non-existent、tenative、conflict ∃ ∄ Ω ϕ \exist \\ \not\exist \\ \Omega \\ \phi ∃∃Ωϕ ma…...

通过conda安装cudatoolikit和cudnn

通过conda安装cudatoolikit和cudnn 安装cudatoolkit安装cudnn安装cudatoolkit-dev 安装cudatoolkit conda install cudatoolkit11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ 安装cudnn conda install cudnn8.5 -c https://mirrors.tuna.tsinghua.edu.…...

vue中使用jsx语法

请注意,在 Vue 中使用 JSX 时,你仍然需要通过 h 函数(通常是一个别名,对应于 createElement 函数)来创建虚拟 DOM 元素。在下面的例子中,h 函数作为 render 函数的参数传入,但在 JSX 语法中你通…...

我的NPI项目之Android USB 系列(一) - 遥望和USB的相识

和USB应该是老朋友了,从2011年接触Android开发开始,就天天和USB打交道了。那时候还有不 对称扁头的usb/方口的usb,直到如今使用广泛的防反插USB3.0 type-C。 但是,一直有一个不是很清楚的问题萦绕在心头,那就是。先有…...

K8s进阶之路-命名空间级-服务发现 :

服务发现: Service(东西流量):集群内网络通信、负载均衡(四层负载)内部跨节点,节点与节点之间的通信,以及pod与pod之间的通信,用Service暴露端口即可实现 Ingress&#…...

智慧公厕管理系统:让城市智慧驿站更加智慧舒适

智慧公厕管理系统是城市智慧驿站中不可或缺的一部分,它通过全方位的信息化解决方案,为公共厕所的使用、运营和管理提供了一种智能化的方式。作为城市智慧驿站的重要组成部分,智慧公厕管理系统发挥着重要的作用,为城市社会民生提供…...

图形渲染基础学习

原文链接:游戏开发入门(三)图形渲染_如果一个面只有三个像素进行渲染可以理解为是定点渲染吗?-CSDN博客 游戏开发入门(三)图形渲染笔记: 渲染一般分为离线渲染与实时渲染,游戏中我们用的都是…...

每日学习总结20240219

每日总结 20240219 1.文件类型.csv CSV文件是一种以逗号分隔值(Comma-Separated Values)为标记的文本文件,它可以用来存储表格数据。每一行表示一条记录,而每一条记录中的字段则使用逗号或其他特定的分隔符进行分隔。 常用场景…...

K8s进阶之路-安装部署K8s

参考:(部署过程参考的下面红色字体文档链接就可以,步骤很详细,重点部分在下面做了标注) 安装部署K8S集群文档: 使用kubeadm方式搭建K8S集群 GitBook 本机: master:10.0.0.13 maste…...

springboot集成elk实现日志采集可视化

一、安装ELK 安装ELK组件请参考我这篇博客:windows下安装ELK(踩坑记录)_windows上安装elk教程-CSDN博客 这里不再重复赘述。 二、编写logstash配置 ELK组件均安装好并成功启动,进入到logstash组件下的config文件夹,创建logstash.conf配置…...

leetcode 148. 排序链表 java解法

Problem: 148. 排序链表 思路 这是一个链表排序的问题,由于要求时间复杂度为 O(nlogn),适合使用归并排序(Merge Sort)来解决。 解题方法 首先,使用快慢指针找到链表的中间节点,将链表分成两部分。然后&…...

【MATLAB源码-第140期】基于matlab的深度学习的两用户NOMA-OFDM系统信道估计仿真,对比LS,MMSE,ML。

操作环境: MATLAB 2022a 1、算法描述 深度学习技术在无线通信领域的应用越来越广泛,特别是在非正交多址接入(NOMA)和正交频分复用(OFDM)系统中,深度学习技术被用来提高信道估计的性能和效率。…...

运动重定向学习笔记

目录 深度学习 重定向 2020年的模型: 重定向之后的bvh: 深度学习 重定向 输入是bvh,输出也是bvh...

导出Excel,支持最佳

列表信息导出为Excel文件&#xff0c; 依赖pom&#xff1a; Sheet, Row:<dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId> </dependency>XSSFWorkbook <dependency><groupId>org.apache.poi</…...

【WPF】获取父控件数据

MaxHeight"{Binding PathActualHeight, RelativeSource{RelativeSource ModeFindAncestor, AncestorTypeUserControl}}" 参考文献 https://www.cnblogs.com/-Timosthetic/p/16021865.html...

解决Edge浏览器,微博无法查看大图(Edge Image Viewer)

使用Edge浏览器浏览微博或其它带校验的图片时&#xff0c;会导致无法查看。 主要原因为Edge自带了一个Edge Image Viewer, 但是该图片查看器无法查看带校验数据的图片&#xff0c;所以导致查看时一片空白。 解决方法 地址栏输入 edge://flags/搜索 Edge Image Viewer选择 Disa…...

PMP含金量在国内怎么样?

其一、PMP(项目管理师)证书含金量高吗&#xff1f; PMP认证是由美国项目管理学会(PMI)在全球范围内推出的针对项目经理的资格认证体系&#xff0c;其证书含金量可以说是非常高。 统计表明&#xff0c;全球年销售收入在5亿美元以上的企业中有86%聘用了具有项目管理资质的项目经…...

java中容易被忽视的toString()方法

之前一直认为toString就是将数据转换成字符类型&#xff0c;直到最近写出了一个bug才对toString有了新的认识 不同数据类型&#xff0c;toString() 有不同的操作 定义一个student类&#xff0c;包含姓名 String类型、性别 String类型、年龄 int 类型、分数列表 String类型的li…...

如何使用Docker搭建YesPlayMusic网易云音乐播放器并发布至公网访问

文章目录 1. 安装Docker2. 本地安装部署YesPlayMusic3. 安装cpolar内网穿透4. 固定YesPlayMusic公网地址 本篇文章讲解如何使用Docker搭建YesPlayMusic网易云音乐播放器&#xff0c;并且结合cpolar内网穿透实现公网访问音乐播放器。 YesPlayMusic是一款优秀的个人音乐播放器&am…...

java面试题之redis篇

1.redis 中的数据类型有哪些 随着 Redis 版本的更新&#xff0c;后面又支持了四种数据类型&#xff1a; BitMap&#xff08;2.2 版新增&#xff09;、HyperLogLog&#xff08;2.8 版新增&#xff09;、GEO&#xff08;3.2 版新增&#xff09;、Stream&#xff08;5.0 版新增&am…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...