当前位置: 首页 > news >正文

五种多目标优化算法(MOAHA、MOGWO、NSWOA、MOPSO、NSGA2)性能对比,包含6种评价指标,9个测试函数(提供MATLAB代码)

一、5种多目标优化算法简介

1.1MOAHA

1.2MOGWO

1.3NSWOA

1.4MOPSO

1.5NSGA2

二、5种多目标优化算法性能对比

为了测试5种算法的性能将其求解9个多目标测试函数(zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3),其中Viennet2 与Viennet3的目标数为3,其余测试函数的目标数为2,并采用6种评价指标(IGD、GD、HV、Coverage、Spread、Spacing)进行评价对比

2.1部分代码

close all;
clear ;
clc;
addpath('./MOAHA/')%添加算法路径
addpath('./MOGWO/')%添加算法路径
addpath('./NSWOA/')%添加算法路径
addpath('./MOPSO/')%添加算法路径
addpath('./NSGA2/')%添加算法路径
%%
% TestProblem测试问题说明:
%一共9个多目标测试函数1-9分别是: zdt1 zdt2 zdt3 zdt4 zdt6 Schaffer  Kursawe Viennet2 Viennet3
%%
TestProblem=3;%测试函数1-9
MultiObj = GetFunInfo(TestProblem);
MultiObjFnc=MultiObj.name;%问题名
% Parameters
params.Np = 100;        % Population size 种群大小
params.Nr = 200;        % Repository size 外部存档
params.maxgen=100;    % Maximum number of generations 最大迭代次数
numOfObj=MultiObj.numOfObj;%目标函数个数
%% 算法求解,分别得到paretoPOS和paretoPOF
[Xbest1,Fbest1] = MOAHA(params,MultiObj);
[Xbest2,Fbest2] = MOGWO(params,MultiObj);
[Xbest3,Fbest3]  = NSWOA(params,MultiObj);
[Xbest4,Fbest4] = MOPSO(params,MultiObj);
[Xbest5,Fbest5]  = NSGA2(params,MultiObj);
FbestData(1).data=Fbest1;
FbestData(2).data=Fbest2;
FbestData(3).data=Fbest3;
FbestData(4).data=Fbest4;
FbestData(5).data=Fbest5;
%% 获取测试函数的真实pareto前沿
True_Pareto=MultiObj.truePF;
%% 计算每个算法的评价指标
% ResultData的值分别是IGD、GD、HV、Coverage、Spread、Spacing
Fbest=Fbest1;
ResultData(1,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest2;
ResultData(2,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest3;
ResultData(3,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest4;
ResultData(4,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
Fbest=Fbest5;
ResultData(5,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
 

2.2部分结果

(2)以ZDT1为例:

(2)以Viennet3为例:

三、完整MATLAB代码

相关文章:

五种多目标优化算法(MOAHA、MOGWO、NSWOA、MOPSO、NSGA2)性能对比,包含6种评价指标,9个测试函数(提供MATLAB代码)

一、5种多目标优化算法简介 1.1MOAHA 1.2MOGWO 1.3NSWOA 1.4MOPSO 1.5NSGA2 二、5种多目标优化算法性能对比 为了测试5种算法的性能将其求解9个多目标测试函数(zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3)&#xff…...

用 LangChain 和 Milvus 从零搭建 LLM 应用

如何从零搭建一个 LLM 应用?不妨试试 LangChain Milvus 的组合拳。 作为开发 LLM 应用的框架,LangChain 内部不仅包含诸多模块,而且支持外部集成;Milvus 同样可以支持诸多 LLM 集成,二者结合除了可以轻松搭建一个 LL…...

[Bug解决] Invalid bound statement (not found)出现原因和解决方法

1、问题描述 在写了一个很普通的查询语句之后,出现了下面的报错信息 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.xxx.oauth.mapper.WxVisitorQrBeanMapper.selectByComIdAndEmpId at org.apache.ibatis.binding.Mappe…...

Qt:Qt3个窗口类的区别、VS与QT项目转换

一、Qt3个窗口类的区别 QMainWindow:包含菜单栏、工具栏、状态栏 QWidget:普通的一个窗口,什么也不包括 QDialog:对话框,常用来做登录窗口、弹出窗口(例如设置页面) QDialog实现简易登录界面…...

uni-app判断不同端

大家好&#xff0c;今天给大家分享的知识是在uni-app中如何区分是在什么端操作的程序 话不多说直接上代码&#xff1a; // #ifdef APP-PLUS<view>APP端</view>// #endif// #ifdef H5<view>H5端</view>// #endif// #ifdef MP<view>小程序端</v…...

计算机网络-网络设备防火墙是什么?

一、防火墙基本概念 前面我们学习了交换机、路由器是网络中常用的设备&#xff0c;现实中还有一个很重要的设备-防火墙。防火墙这一设备通常用于两个网络之间有针对性的、逻辑意义上的隔离。在网络通信领域&#xff0c;防火墙是一种安全设备。它用于保护一个网络区域免受来自另…...

Code Composer Studio (CCS) - Breakpoint (断点)

Code Composer Studio [CCS] - Breakpoint [断点] 1. BreakpointReferences 1. Breakpoint 选中断点右键 -> Breakpoint Properties… Skip Count&#xff1a;跳过断点总数&#xff0c;在断点执行之前设置总数 Current Count&#xff1a;当前跳过断电累计值 References […...

人工智能_普通服务器CPU_安装清华开源人工智能AI大模型ChatGlm-6B_001---人工智能工作笔记0096

使用centos安装,注意安装之前,保证系统可以联网,然后执行yum update 先去更新一下系统,可以省掉很多麻烦 20240219_150031 这里我们使用centos系统吧,使用习惯了. ChatGlm首先需要一台个人计算机,或者服务器, 要的算力,训练最多,微调次之,推理需要算力最少 其实很多都支持C…...

分层钱包HD钱包

bc1 开头的通常指的是比特币&#xff08;Bitcoin&#xff09;的地址&#xff0c;这种格式遵循了比特币改进提案BIP 0173中定义的Bech32编码格式。Bech32地址也被称为"SegWit"地址&#xff0c;它们支持Segregated Witness功能&#xff0c;这是比特币网络为了提高区块链…...

基于python+mysql的宠物领养网站系统

功能介绍 平台采用B/S结构&#xff0c;后端采用主流的Python语言进行开发&#xff0c;前端采用主流的Vue.js进行开发。 整个平台包括前台和后台两个部分。 前台功能包括&#xff1a;首页、宠物详情页、用户中心模块。后台功能包括&#xff1a;总览、领养管理、宠物管理、分类…...

机器学习入门--门控循环单元(GRU)原理与实践

GRU模型 随着深度学习领域的快速发展&#xff0c;循环神经网络&#xff08;RNN&#xff09;已成为自然语言处理&#xff08;NLP&#xff09;等领域中常用的模型之一。但是&#xff0c;在RNN中&#xff0c;如果时间步数较大&#xff0c;会导致梯度消失或爆炸的问题&#xff0c;…...

GitHub Actions

GitHub Actions GitHub Actions 是 GitHub 提供的一种持续集成&#xff08;CI&#xff09;和持续部署&#xff08;CD&#xff09;解决方案。它可以让你在 GitHub 仓库中直接自动化、定制化和执行软件开发工作流程。 比如&#xff0c;当有新的推送到仓库或者新的 Pull Request…...

harmony 鸿蒙系统学习 安装ohpm报错 ohpm install failed

一. 安装配置 DevEco Studio 安装包时报错 execute ohpm install failed. Install task failed: ArkTS 3.2.12.5. Install ArkTS dependencies failed. 解决办法 找原因&#xff0c;首先&#xff0c;我的电脑中之前安装过node&#xff0c;也许是因为这个。&#xff08;其实…...

MySQL Replication

0 序言 MySQL Replication 是 MySQL 中的一个功能&#xff0c;允许从一个 MySQL 数据库服务器&#xff08;称为主服务器或 master&#xff09;复制数据和数据库结构到另一个服务器&#xff08;称为从服务器或 slave&#xff09;。这种复制是异步的&#xff0c;意味着从服务器不…...

redis分布式锁redisson

文章目录 1. 分布式锁1.1 基本原理和实现方式对比synchronized锁在集群模式下的问题多jvm使用同一个锁监视器分布式锁概念分布式锁须满足的条件分布式锁的实现 1.2 基于Redis的分布式锁获取锁&释放锁操作示例 基于Redis实现分布式锁初级版本ILock接口SimpleRedisLock使用示…...

制作一个简单的html网页

1. 特效按钮 2 可以独立使用的一个页面 3 底部小时钟 <!DOCTYPE html> <html> <head><title>Simple Webpage</title><style>/* 禁止鼠标右键 */body {-webkit-touch-callout: none; /* iOS Safari */-webkit-user-select: none; …...

js filter,every,includes 过滤数组

背景&#xff1a; 页面&#xff1a;在项目中遇到的&#xff0c;前端页面显示为&#xff0c;顶部是下拉搜索条件,下面是一个表格&#xff1b; 数据&#xff1a;接口请求一次性拿到所有&#xff1a;搜索条件里的下拉选项和表格中的数据&#xff1b; 现状&#xff1a;需要前端在搜…...

jenkins自动化部署

Jenkins安装 安装前提条件 yum install java-1.8.0-openjdk* git maven -y ​ 1.下载jenkins wget https://mirrors.tuna.tsinghua.edu.cn/jenkins/redhat/jenkins-2.346-1.1.noarch.rpm --no-check-certificate ​ jenkins的安装路径&#xff1a; /var/lib/jenkins/ ​ …...

【JavaScript】分支语句

目录 一、if语句 二、三元运算符 三、switch语句 JS中分支语句可以分为三种&#xff0c;分别是if语句、三元运算符、switch语句。 一、if语句 let num 10 if (num > 20) {console.log("大于20"); } else if (num < 20) {console.log("小于20");…...

【开源】SpringBoot框架开发农家乐订餐系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户2.2 管理员 三、系统展示四、核心代码4.1 查询菜品类型4.2 查询菜品4.3 加购菜品4.4 新增菜品收藏4.5 新增菜品留言 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的农家乐订餐系统&#xff0c…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...