当前位置: 首页 > news >正文

MLflow【部署 01】MLflow官网Quick Start实操(一篇学会部署使用MLflow)

一篇学会部署使用MLflow

  • 1.版本及环境
  • 2.官方步骤
    • Step-1 Get MLflow
    • Step-2 Start a Tracking Server
    • Step 3 - Train a model and prepare metadata for logging
    • Step 4 - Log the model and its metadata to MLflow
    • Step 5 - Load the model as a Python Function (pyfunc) and use it for inference
    • Step 6 - View the Run in the MLflow UI
  • 3.总结

Learn in 5 minutes how to log,register,and load a model for inference. 在5分钟内学习如何记录、注册和加载模型用于推理。

1.版本及环境

本文基于2.9.2版本进行说明,内容来自官方文档:https://www.mlflow.org/docs/2.9.2/getting-started/intro-quickstart/index.html,测试环境说明:

# 1.服务器系统版本
CentOS Linux release 7.9.2009 (Core)# 2.使用conda创建的虚拟环境【conda create -n mlflow python=3.8】
(mlflow) [root@tcloud /]# python -V
Python 3.8.18

2.官方步骤

Step-1 Get MLflow

# 官方步骤
pip install mlflow# 实际操作【限制版本 否则会安装最新版本】
pip install mlflow==2.9.2

Step-2 Start a Tracking Server

# 官方步骤
mlflow server --host 127.0.0.1 --port 8080
# 启动日志【删除了时间信息】
[5027] [INFO] Starting gunicorn 21.2.0
[5027] [INFO] Listening at: http://127.0.0.1:8080 (5027)
[5027] [INFO] Using worker: sync
[5030] [INFO] Booting worker with pid: 5030
[5031] [INFO] Booting worker with pid: 5031
[5032] [INFO] Booting worker with pid: 5032
[5033] [INFO] Booting worker with pid: 5033# 实际操作【使用的是腾讯云服务器】
mlflow server --host 0.0.0.0 --port 9090
# 启动日志【删除了时间信息】
[13020] [INFO] Starting gunicorn 21.2.0
[13020] [INFO] Listening at: http://0.0.0.0:9090 (13020)
[13020] [INFO] Using worker: sync
[13023] [INFO] Booting worker with pid: 13023
[13024] [INFO] Booting worker with pid: 13024
[13025] [INFO] Booting worker with pid: 13025
[13026] [INFO] Booting worker with pid: 13026
  • –host 0.0.0.0 to listen on all network interfaces (or a specific interface address).

启动后,访问http://<host>:<port>可查看到页面:

image.png

如果使用的是 Databricks 未提供的托管 MLflow 跟踪服务器,或者运行本地跟踪服务器,请确保使用以下命令设置跟踪服务器的 URI:

import mlflowmlflow.set_tracking_uri(uri="http://<host>:<port>")

如果未在运行时环境中设置此项,则运行将记录到本地文件系统。

Step 3 - Train a model and prepare metadata for logging

在本部分中,我们将使用 MLflow 记录模型。这些步骤的快速概述如下:

  • 加载并准备用于建模的 Iris 数据集。
  • 训练逻辑回归模型并评估其性能。
  • 准备模型超参数并计算日志记录指标。

官方代码如下:

import mlflow
from mlflow.models import infer_signatureimport pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score# Load the Iris dataset
X, y = datasets.load_iris(return_X_y=True)# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
)# Define the model hyperparameters
params = {"solver": "lbfgs","max_iter": 1000,"multi_class": "auto","random_state": 8888,
}# Train the model
lr = LogisticRegression(**params)
lr.fit(X_train, y_train)# Predict on the test set
y_pred = lr.predict(X_test)# Calculate metrics
accuracy = accuracy_score(y_test, y_pred)

Step 4 - Log the model and its metadata to MLflow

这个步骤将使用我们训练的模型、为模型拟合指定的超参数,以及通过评估模型对要记录到 MLflow 的测试数据的性能来计算的损失指标。步骤如下:

  • 启动 MLflow 运行上下文以启动新运行,我们将模型和元数据记录到该运行。
  • 记录模型参数和性能指标。
  • 标记运行以便于检索。
  • 在记录(保存)模型时,在 MLflow 模型注册表中注册模型。

官方代码如下:

# Set our tracking server uri for logging
mlflow.set_tracking_uri(uri="http://127.0.0.1:8080")# Create a new MLflow Experiment
mlflow.set_experiment("MLflow Quickstart")# Start an MLflow run
with mlflow.start_run():# Log the hyperparametersmlflow.log_params(params)# Log the loss metricmlflow.log_metric("accuracy", accuracy)# Set a tag that we can use to remind ourselves what this run was formlflow.set_tag("Training Info", "Basic LR model for iris data")# Infer the model signaturesignature = infer_signature(X_train, lr.predict(X_train))# Log the modelmodel_info = mlflow.sklearn.log_model(sk_model=lr,artifact_path="iris_model",signature=signature,input_example=X_train,registered_model_name="tracking-quickstart",)

Step 5 - Load the model as a Python Function (pyfunc) and use it for inference

记录模型后,我们可以通过以下方式执行推理:

  • 使用 MLflow 的 pyfunc 风格加载模型。
  • 使用加载的模型对新数据运行 Predict。

官方源码如下:

# Load the model back for predictions as a generic Python Function model
loaded_model = mlflow.pyfunc.load_model(model_info.model_uri)predictions = loaded_model.predict(X_test)iris_feature_names = datasets.load_iris().feature_namesresult = pd.DataFrame(X_test, columns=iris_feature_names)
result["actual_class"] = y_test
result["predicted_class"] = predictionsresult[:4]

Step 6 - View the Run in the MLflow UI

官方带注释的示例:


实际执行示例:

image.png
官方运行详情图片:


实际运行详情图片:

image.png
查看生成的模型:

image.png
恭喜你完成了 MLflow 跟踪快速入门!

3.总结

  • 安装简单
  • 快速入门不难
  • 能够灵活应用需要进行更多的学习

相关文章:

MLflow【部署 01】MLflow官网Quick Start实操(一篇学会部署使用MLflow)

一篇学会部署使用MLflow 1.版本及环境2.官方步骤Step-1 Get MLflowStep-2 Start a Tracking ServerStep 3 - Train a model and prepare metadata for loggingStep 4 - Log the model and its metadata to MLflowStep 5 - Load the model as a Python Function (pyfunc) and us…...

NDK的log.h使用__android_log_print报错app:buildCMakeDebug[x86_64]

org.gradle.api.tasks.TaskExecutionException: Execution failed for task :app:buildCMakeDebug[x86_64] 重点是 Execution failed for task :app:buildCMakeDebug[x86_64]. 我的代码&#xff1a; #include <android/log.h> #define LOG_TAG "MyJNI" #d…...

【计算机网络:DHCP协议】

文章目录 前言一、DHCP是什么&#xff1f;二、DHCP的工作原理1.基本流程发现&#xff08;DISCOVER&#xff09;提供&#xff08;OFFER&#xff09;请求&#xff08;REQUEST&#xff09;确认&#xff08;ACKNOWLEDGEMENT&#xff09; 2.DHCP租约的概念3.DHCP续租过程 三、DHCP服…...

http前生今世

HTTP/0.9&#xff0c;仅支持GET方法&#xff0c;并且响应中没有HTTP头信息&#xff0c;只有文档内容。 HTTP/1.0增加了对POST方法、状态码、HTTP头信息等的支持&#xff0c;这一版本也是广泛应用的历史性版本。 HTTP/1.1引入了持久连接&#xff08;Persistent Connections&…...

一键安装ROS适用于Ubuntu22/20/18

一键安装ROS适用于Ubuntu22/20/18 1、简介 ROS&#xff08;Robot Operating System&#xff0c;机器人操作系统&#xff09;是一个用于机器人软件开发的框架。它提供了一套工具和库&#xff0c;用于机器人应用程序的开发、测试和部署。ROS是由美国斯坦福大学机器人实验室&…...

OLED透明屏厂家:开启2024年新征程

随着科技的不断进步和创新&#xff0c;OLED透明屏作为一种前沿的显示技术&#xff0c;正逐渐走进人们的视野&#xff0c;成为多个领域的焦点。在2024年2月21日这个特殊的日子&#xff0c;我们这家领先的OLED透明屏厂家正式开工&#xff0c;预示着我们将迎来一个充满机遇和挑战的…...

【算法与数据结构】200、695、LeetCode岛屿数量(深搜+广搜) 岛屿的最大面积

文章目录 一、200、岛屿数量1.1 深度优先搜索DFS1.2 广度优先搜索BFS 二、695、岛屿的最大面积2.1 深度优先搜索DFS2.2 广度优先搜索BFS 三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、200、岛屿数量 1.1 深度优先搜…...

第四十一回 还道村受三卷天书 宋公明遇九天玄女-python创建临时文件和文件夹

宋江想回家请老父亲上山&#xff0c;晁盖说过几天带领山寨人马一起去。宋江还是坚持一个人去。 宋江到了宋家村&#xff0c;被两个都头和捕快们追捕&#xff0c;慌不择路&#xff0c;躲进了一所古庙。一会儿&#xff0c;听见有人说&#xff1a;小童奉娘娘法旨&#xff0c;请星主…...

Tofu5m 高速实时推理Yolov8

Tofu5m 是高性价比目标识别跟踪模块&#xff0c;支持可见光视频或红外网络视频的输入&#xff0c;支持视频下的多类型物体检测、识别、跟踪等功能。 Yolov8推理速度达到40帧每秒。 实测视频链接&#xff1a;Tofu5m识别跟踪模块_哔哩哔哩_bilibili 产品支持视频编码、设备管理…...

[SWPUCTF 2021 新生赛]crypto8

第一眼看见是乱码不确定是什么的编码 看了下感觉是UUencode编码 UUencode编码是一种古老的编码方式&#xff0c;通常用于将二进制数据转换成可打印字符的形式。UUencode编码采用一种基于64个字符的编码表&#xff0c;将每3个字节的数据编码为4个可打印字符&#xff0c;以实现…...

学习使用js调用动态函数名(动态变量函数名)

学习使用js调用动态函数名-动态变量函数名 背景代码 背景 函数名写在 html 上&#xff0c;在 js 中定义这个变量&#xff0c;js 报错该函数不存在&#xff0c;在此给出解决方法 代码 //html代码如下 <a data-function"qipa" class"clickMe">250&l…...

CSS 圆形的时钟秒针状的手柄绕中心点旋转的效果

<template><!-- 创建一个装载自定义加载动画的容器 --><view class="cloader"><!-- 定义加载动画主体部分 --><view class="clface"><!-- 定义类似秒针形状的小圆盘 --><view class="clsface"><!-…...

MYSQL--存储过程操作

一&#xff1a;概念&#xff1a; 存储过程实际上对标了JAVA当中的方法&#xff0c;两者是相似的&#xff0c;同时需要注意的一点是&#xff0c;MYSQL仅仅在5.0版本之后才出现这种存储操作的过程&#xff1b; 优点&#xff1a; 1.存储过程能够让运行的速度变得更加迅速&#xff…...

C#上位机与三菱PLC的通信09---开发自己的通讯库(A-3E版)

1、A-3E报文回顾 具体细节请看&#xff1a; C#上位机与三菱PLC的通信05--MC协议之QnA-3E报文解析 C#上位机与三菱PLC的通信06--MC协议之QnA-3E报文测试 2、为何要开发自己的通讯库 前面开发了自己的A-1E协议的通讯库&#xff0c;实现了数据的读写&#xff0c;对于封装的通…...

【LeetCode】70. 爬楼梯(简单)——代码随想录算法训练营Day38

题目链接&#xff1a;70. 爬楼梯 题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到…...

图数据库 之 Neo4j - Cypher语法基础(5)

节点(Nodes) Cypher使用()来表示一个节点。 () # 最简单的节点形式,表示一个任意无特征的节点,其实就是一个空节点(movie) # 如果想指向一个节点在其他地方,我们可以给节点添加一个变量名(如movie),表示一个变量名为 movie的节点。(:Movie) # 表示一个标签为 Movie 的匿名…...

打造智能物品租赁平台:Java与SpringBoot的实践

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…...

盘点那些世界名校计算机专业采用的教材

清华、北大、MIT、CMU、斯坦福的学霸们在新学期里要学什么&#xff1f;今天我们来盘点一下那些世界名校计算机专业采用的教材。 书单目录 1.《深入理解计算机系统》&#xff08;原书第3版&#xff09;2. 《算法导论》&#xff08;原书第3版&#xff09;3. 《计算机程序的构造和…...

编程笔记 Golang基础 013 格式化输入输出

编程笔记 Golang基础 013 格式化输入输出 一、格式化输出1. fmt.Print系列函数2. Printf格式说明3. 格式化布尔类型 二、格式化输入1. fmt.Scan系列函数注意事项 三、练习小结 Go语言中的格式化输入和输出主要通过标准库 fmt 包来实现。主要是输出需要格式化。 一、格式化输出 …...

身份证实名认证接口-简单的身份认证API调用方法

还在为复杂的API调用头疼不已&#xff1f;今天为大家带来一种超简单的身份认证API调用方法&#xff0c;让你的工作效率瞬间起飞&#xff01; Java调用代码如下&#xff1a; import java.io.*; import okhttp3.*; public class main { public static void main(String []ar…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...