基于CNN-GRU-Attention的时间序列回归预测matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
4.1 CNN(卷积神经网络)部分
4.2 GRU(门控循环单元)部分
4.3 Attention机制部分
5.算法完整程序工程
1.算法运行效果图预览




2.算法运行软件版本
matlab2022a
3.部分核心程序
...................................................................%CNN-GRU-ATT
layers = func_model(Dim);%设置
%迭代次数
%学习率为0.001
options = trainingOptions('adam', ... 'MaxEpochs', 1500, ... 'InitialLearnRate', 1e-4, ... 'LearnRateSchedule', 'piecewise', ... 'LearnRateDropFactor', 0.1, ... 'LearnRateDropPeriod', 1000, ... 'Shuffle', 'every-epoch', ... 'Plots', 'training-progress', ... 'Verbose', false);%训练
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid onsubplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid onsubplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
116
4.算法理论概述
CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)来进行时间序列数据的回归预测。CNN用于提取时间序列的局部特征,GRU用于捕获时间序列的长期依赖关系,而注意力机制则用于在预测时强调重要的时间步。
4.1 CNN(卷积神经网络)部分
在时间序列回归任务中,CNN用于捕获局部特征和模式:

4.2 GRU(门控循环单元)部分
GRU用于捕捉时间序列的长期依赖关系:

4.3 Attention机制部分

最后,通过反向传播算法调整所有参数以最小化预测误差,并在整个训练集上迭代优化模型。
5.算法完整程序工程
OOOOO
OOO
O
相关文章:
基于CNN-GRU-Attention的时间序列回归预测matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 CNN(卷积神经网络)部分 4.2 GRU(门控循环单元)部分 4.3 Attention机制部分 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版…...
Docker部署Halo容器并结合内网穿透实现公网访问本地个人博客
文章目录 1. Docker部署Halo1.1 检查Docker版本如果未安装Docker可参考已安装Docker步骤:1.2 在Docker中部署Halo 2. Linux安装Cpolar2.1 打开服务器防火墙2.2 安装cpolar内网穿透 3. 配置Halo个人博客公网地址4. 固定Halo公网地址 本文主要介绍如何在CentOS 7系统使…...
纯css实现文字左右循环滚动播放效果
思路:由两个span模块组成,第一个为空的span内容,为的是实现第二个span内容缓慢出现的效果。 代码如下: <div class"scrollingStyle"><span class"first-marquee"></span><span class&q…...
【Java EE初阶二十二】https的简单理解
1. 初识https 当前网络上,主要都是 HTTPS 了,很少能见到 HTTP.实际上 HTTPS 也是基于 HTTP.只不过 HTTPS 在 HTTP 的基础之上, 引入了"加密"机制;引入 HTTPS 防止你的数据被黑客篡改 ; HTTPS 就是一个重要的保护措施.之所以能够安全, 最关键的…...
系统学习Python——装饰器:类装饰器-[跟踪对象接口:基础知识]
分类目录:《系统学习Python》总目录 文章《系统学习Python——装饰器:类装饰器-[单例类:基础知识]》的单例示例阐明了如何使用类装饰器来管理一个类的所有实例。类装饰器的另一个常用场景是为每个生成的实例扩展接口。类装饰器基本上可以在实…...
go-redis 使用 redis 6.0.14 版本错误: consider implementing encoding.BinaryMarshaler
使用方法 err : bp.data.redis.Get(ctx, policyKey).Scan(&result)起初在 redis 5.x.x 版本并没有遇到错误,但是在切换 redis 实例之后就出现了错误(他们之间只是版本不同)。 修复方法 看错误日志的描述,大概含义就是需要我们…...
计网 - 域名解析的工作流程
文章目录 Pre引言1. DNS是什么2. 域名结构3. 域名解析的工作流程4. 常见的DNS记录类型5. DNS安全6. 未来的发展趋势 Pre 计网 - DNS 域名解析系统 引言 在我们日常使用互联网时,经常会输入各种域名来访问网站、发送电子邮件或连接其他网络服务。然而,我…...
普中51单片机学习(EEPROM)
EEPROM IIC串行总线的组成及工作原理 I2C总线的数据传送 数据位的有效性规定 I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许…...
智能风控体系之供应链业务模式
供应链金融是一种针对中小企业的新型融资模式,将资金流有效整合到供应链管理的过程中,既为供应链各环节企业提供贸易资金服务,又为供应链弱势企业提供新型贷款融资服务,以核心客户为依托,以真实贸易背景为前提…...
最少停车数(C 语言)
题目描述 特定大小的停车场,数组cars[]表示,其中1表示有车,0表示没车。车辆大小不一,小车占一个车位(长度1),货车占两个车位(长度2),卡车占三个车位…...
MAC M1安装vmware和centos7虚拟机并配置静态ip
一、下载vmware和centos7镜像 1、VMWare Fusion 官网的下载地址是:下载地址 下载好之后注册需要秘钥,在官网注册后使用免费的个人秘钥 2、centos7 下载地址: https://biosyxh.cn:5001/sharing/pAlcCGNJf 二、虚拟机安装 直接将下…...
java 课程签到管理系统Myeclipse开发mysql数据库web结构jsp编程servlet计算机网页项目
一、源码特点 java 课程签到管理系统是一套完善的java web信息管理系统 采用serlvetdaobean,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发࿰…...
Linux——网络通信TCP通信常用的接口和tcp服务demo
文章目录 TCP通信所需要的套接字socket()bind()listen()acceptconnect() 封装TCP socket TCP通信所需要的套接字 socket() socket()函数主要作用是返回一个描述符,他的作用就是打开一个网络通讯端口,返回的这个描述符其实就可以理解为一个文件描述符&a…...
【web | CTF】反序列化打法
天命:因为是php的上古版本,所以本机无法复现,只能用归纳法解决,就是题海战术找相同点,fuzz来测试新的题目 题目一:绕过正则和绕过__wakeup函数,private属性 【web | CTF】攻防世界 Web_php_uns…...
如何在Linux搭建Inis网站,并发布至公网实现远程访问【内网穿透】
如何在Linux搭建Inis网站,并发布至公网实现远程访问【内网穿透】 前言1. Inis博客网站搭建1.1. Inis博客网站下载和安装1.2 Inis博客网站测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道(云端设置)2.3.…...
YOLOv9来了! 使用可编程梯度信息学习你想学的内容, v7作者新作!【文献速读】
YOLOv9文献速读,本文章使用 GPT 4.0 和 Ai PDF 工具完成。 文章地址:https://arxiv.org/pdf/2402.13616.pdf 文章目录 文章简介有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?论文试图解决什么问题&a…...
【鸿蒙 HarmonyOS 4.0】网络请求
一、介绍 资料来自官网:文档中心 网络管理模块主要提供以下功能: HTTP数据请求:通过HTTP发起一个数据请求。WebSocket连接:使用WebSocket建立服务器与客户端的双向连接。Socket连接:通过Socket进行数据传输。 日常…...
QT中的多线程有什么作用?
概述 在学习QT线程的时候我们首先要知道的是QT的主线程,也叫GUI线程,意如其名,也就是我们程序的最主要的一个线程,主要负责初始化界面并监听事件循环,并根据事件处理做出界面上的反馈。但是当我们只限于在一个主线程上…...
redis最佳实践
原则:redis希望存储的是热点数据,尽量可以在一天内访问到。 最佳实践 选择合适的数据结构 redis有String、Hash、Set、SortedSet、List等结构,主要依据业务需要进行选择 string:几乎所有数据都可以用string存储,但是最好适用于…...
架构师技能9-深入mybatis:Creating a new SqlSession到查询语句耗时特别长
开篇语录:以架构师的能力标准去分析每个问题,过后由表及里分析问题的本质,复盘总结经验,并把总结内容记录下来。当你解决各种各样的问题,也就积累了丰富的解决问题的经验,解决问题的能力也将自然得到极大的…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
Vue 3 + WebSocket 实战:公司通知实时推送功能详解
📢 Vue 3 WebSocket 实战:公司通知实时推送功能详解 📌 收藏 点赞 关注,项目中要用到推送功能时就不怕找不到了! 实时通知是企业系统中常见的功能,比如:管理员发布通知后,所有用户…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
