当前位置: 首页 > news >正文

基于CNN-GRU-Attention的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 CNN(卷积神经网络)部分

4.2 GRU(门控循环单元)部分

4.3 Attention机制部分

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

...................................................................%CNN-GRU-ATT
layers = func_model(Dim);%设置
%迭代次数
%学习率为0.001
options = trainingOptions('adam', ...       'MaxEpochs', 1500, ...                 'InitialLearnRate', 1e-4, ...          'LearnRateSchedule', 'piecewise', ...  'LearnRateDropFactor', 0.1, ...        'LearnRateDropPeriod', 1000, ...        'Shuffle', 'every-epoch', ...          'Plots', 'training-progress', ...     'Verbose', false);%训练
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid onsubplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid onsubplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
116

4.算法理论概述

         CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)来进行时间序列数据的回归预测。CNN用于提取时间序列的局部特征,GRU用于捕获时间序列的长期依赖关系,而注意力机制则用于在预测时强调重要的时间步。

4.1 CNN(卷积神经网络)部分

        在时间序列回归任务中,CNN用于捕获局部特征和模式:

4.2 GRU(门控循环单元)部分

GRU用于捕捉时间序列的长期依赖关系:

4.3 Attention机制部分

最后,通过反向传播算法调整所有参数以最小化预测误差,并在整个训练集上迭代优化模型。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于CNN-GRU-Attention的时间序列回归预测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 CNN(卷积神经网络)部分 4.2 GRU(门控循环单元)部分 4.3 Attention机制部分 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版…...

Docker部署Halo容器并结合内网穿透实现公网访问本地个人博客

文章目录 1. Docker部署Halo1.1 检查Docker版本如果未安装Docker可参考已安装Docker步骤:1.2 在Docker中部署Halo 2. Linux安装Cpolar2.1 打开服务器防火墙2.2 安装cpolar内网穿透 3. 配置Halo个人博客公网地址4. 固定Halo公网地址 本文主要介绍如何在CentOS 7系统使…...

纯css实现文字左右循环滚动播放效果

思路&#xff1a;由两个span模块组成&#xff0c;第一个为空的span内容&#xff0c;为的是实现第二个span内容缓慢出现的效果。 代码如下&#xff1a; <div class"scrollingStyle"><span class"first-marquee"></span><span class&q…...

【Java EE初阶二十二】https的简单理解

1. 初识https 当前网络上,主要都是 HTTPS 了,很少能见到 HTTP.实际上 HTTPS 也是基于 HTTP.只不过 HTTPS 在 HTTP 的基础之上, 引入了"加密"机制&#xff1b;引入 HTTPS 防止你的数据被黑客篡改 &#xff1b; HTTPS 就是一个重要的保护措施.之所以能够安全, 最关键的…...

系统学习Python——装饰器:类装饰器-[跟踪对象接口:基础知识]

分类目录&#xff1a;《系统学习Python》总目录 文章《系统学习Python——装饰器&#xff1a;类装饰器-[单例类&#xff1a;基础知识]》的单例示例阐明了如何使用类装饰器来管理一个类的所有实例。类装饰器的另一个常用场景是为每个生成的实例扩展接口。类装饰器基本上可以在实…...

go-redis 使用 redis 6.0.14 版本错误: consider implementing encoding.BinaryMarshaler

使用方法 err : bp.data.redis.Get(ctx, policyKey).Scan(&result)起初在 redis 5.x.x 版本并没有遇到错误&#xff0c;但是在切换 redis 实例之后就出现了错误&#xff08;他们之间只是版本不同&#xff09;。 修复方法 看错误日志的描述&#xff0c;大概含义就是需要我们…...

计网 - 域名解析的工作流程

文章目录 Pre引言1. DNS是什么2. 域名结构3. 域名解析的工作流程4. 常见的DNS记录类型5. DNS安全6. 未来的发展趋势 Pre 计网 - DNS 域名解析系统 引言 在我们日常使用互联网时&#xff0c;经常会输入各种域名来访问网站、发送电子邮件或连接其他网络服务。然而&#xff0c;我…...

普中51单片机学习(EEPROM)

EEPROM IIC串行总线的组成及工作原理 I2C总线的数据传送 数据位的有效性规定 I2C总线进行数据传送时&#xff0c;时钟信号为高电平期间&#xff0c;数据线上的数据必须保持稳定&#xff0c;只有在时钟线上的信号为低电平期间&#xff0c;数据线上的高电平或低电平状态才允许…...

智能风控体系之供应链业务模式

供应链金融是一种针对中小企业的新型融资模式&#xff0c;将资金流有效整合到供应链管理的过程中&#xff0c;既为供应链各环节企业提供贸易资金服务&#xff0c;又为供应链弱势企业提供新型贷款融资服务&#xff0c;以核心客户为依托&#xff0c;以真实贸易背景为前提&#xf…...

最少停车数(C 语言)

题目描述 特定大小的停车场&#xff0c;数组cars[]表示&#xff0c;其中1表示有车&#xff0c;0表示没车。车辆大小不一&#xff0c;小车占一个车位&#xff08;长度1&#xff09;&#xff0c;货车占两个车位&#xff08;长度2&#xff09;&#xff0c;卡车占三个车位&#xf…...

MAC M1安装vmware和centos7虚拟机并配置静态ip

一、下载vmware和centos7镜像 1、VMWare Fusion 官网的下载地址是&#xff1a;下载地址 下载好之后注册需要秘钥&#xff0c;在官网注册后使用免费的个人秘钥 2、centos7 下载地址&#xff1a; https://biosyxh.cn:5001/sharing/pAlcCGNJf 二、虚拟机安装 直接将下…...

java 课程签到管理系统Myeclipse开发mysql数据库web结构jsp编程servlet计算机网页项目

一、源码特点 java 课程签到管理系统是一套完善的java web信息管理系统 采用serlvetdaobean&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&#xff0…...

Linux——网络通信TCP通信常用的接口和tcp服务demo

文章目录 TCP通信所需要的套接字socket()bind()listen()acceptconnect() 封装TCP socket TCP通信所需要的套接字 socket() socket()函数主要作用是返回一个描述符&#xff0c;他的作用就是打开一个网络通讯端口&#xff0c;返回的这个描述符其实就可以理解为一个文件描述符&a…...

【web | CTF】反序列化打法

天命&#xff1a;因为是php的上古版本&#xff0c;所以本机无法复现&#xff0c;只能用归纳法解决&#xff0c;就是题海战术找相同点&#xff0c;fuzz来测试新的题目 题目一&#xff1a;绕过正则和绕过__wakeup函数&#xff0c;private属性 【web | CTF】攻防世界 Web_php_uns…...

如何在Linux搭建Inis网站,并发布至公网实现远程访问【内网穿透】

如何在Linux搭建Inis网站&#xff0c;并发布至公网实现远程访问【内网穿透】 前言1. Inis博客网站搭建1.1. Inis博客网站下载和安装1.2 Inis博客网站测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3.…...

YOLOv9来了! 使用可编程梯度信息学习你想学的内容, v7作者新作!【文献速读】

YOLOv9文献速读&#xff0c;本文章使用 GPT 4.0 和 Ai PDF 工具完成。 文章地址&#xff1a;https://arxiv.org/pdf/2402.13616.pdf 文章目录 文章简介有哪些相关研究&#xff1f;如何归类&#xff1f;谁是这一课题在领域内值得关注的研究员&#xff1f;论文试图解决什么问题&a…...

【鸿蒙 HarmonyOS 4.0】网络请求

一、介绍 资料来自官网&#xff1a;文档中心 网络管理模块主要提供以下功能&#xff1a; HTTP数据请求&#xff1a;通过HTTP发起一个数据请求。WebSocket连接&#xff1a;使用WebSocket建立服务器与客户端的双向连接。Socket连接&#xff1a;通过Socket进行数据传输。 日常…...

QT中的多线程有什么作用?

概述 在学习QT线程的时候我们首先要知道的是QT的主线程&#xff0c;也叫GUI线程&#xff0c;意如其名&#xff0c;也就是我们程序的最主要的一个线程&#xff0c;主要负责初始化界面并监听事件循环&#xff0c;并根据事件处理做出界面上的反馈。但是当我们只限于在一个主线程上…...

redis最佳实践

原则&#xff1a;redis希望存储的是热点数据&#xff0c;尽量可以在一天内访问到。 最佳实践 选择合适的数据结构 redis有String、Hash、Set、SortedSet、List等结构&#xff0c;主要依据业务需要进行选择 string:几乎所有数据都可以用string存储&#xff0c;但是最好适用于…...

架构师技能9-深入mybatis:Creating a new SqlSession到查询语句耗时特别长

开篇语录&#xff1a;以架构师的能力标准去分析每个问题&#xff0c;过后由表及里分析问题的本质&#xff0c;复盘总结经验&#xff0c;并把总结内容记录下来。当你解决各种各样的问题&#xff0c;也就积累了丰富的解决问题的经验&#xff0c;解决问题的能力也将自然得到极大的…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...