当前位置: 首页 > news >正文

经典分类模型回顾5—DenseNet实现图像分类(matlab)

DenseNet,全称为Densely Connected Convolutional Networks,中文名为密集连接卷积网络,是由李沐等人在2017年提出的一种深度神经网络架构。 

DenseNet旨在解决深度神经网络中的梯度消失问题和参数数量过多的问题,通过构建密集连接的方式,使得网络能够更好地利用之前的特征,从而获得更好的性能。DenseNet的核心思想是:把网络中前面的层与后面的层进行连接,让前面的层的输出成为后面的层的输入。这样,整个卷积网络就变得非常紧凑,同时也避免了梯度消失的问题。

DenseNet的优点在于:参数少、计算速度快、准确率高。因此,DenseNet在图像识别、目标检测、图像分割等任务中都取得了很好的表现。

DenseNet是一种深度神经网络架构,它具有特殊的连接方式,可以有效地减少网络中的参数量,提高模型的准确性和稳定性。在图像分类任务中,DenseNet常常被使用。

在MATLAB中,可以使用深度学习工具箱来搭建和训练DenseNet模型。下面是一个简单的例子,展示如何使用深度学习工具箱来训练一个DenseNet模型进行CIFAR-10图像分类。

1. 准备数据

首先需要下载CIFAR-10数据集,可以使用MATLAB自带的数据集下载工具来获取数据集。

```MATLAB
cifar10Data = fullfile(tempdir, 'cifar-10-matlab');
if ~exist(cifar10Data, 'dir')
    cifar10Data = fullfile(toolboxdir('vision'), 'visiondata', 'cifar10');
    if ~exist(cifar10Data, 'dir')
        mkdir(cifar10Data);
        url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';
        helperCIFAR10Data.download(url, cifar10Data);
    end
end
```

2. 加载数据

使用 `imageDatastore` 函数将数据加载到MATLAB中。在此过程中,可以对图像进行增强处理,以提高模型的训练效果。

```MATLAB
% Load training and test data
[trainingImages, trainingLabels, testImages, testLabels] = helperCIFAR10Data.load(cifar10Data);

% Construct an imageDatastore object
trainingSet = imageDatastore(trainingImages, ...
    'labels', trainingLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

testSet = imageDatastore(testImages, ...
    'labels', testLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

% Prepare the data for training
inputSize = [32 32 3];
numClasses = 10;

% Apply data augmentation
augmentedTrainingSet = augmentedImageDatastore(inputSize, ...
    trainingSet, ...
    'ColorPreprocessing', 'gray2rgb', ...
    'RandCropSize', [28 28], ...
    'RandCropType', 'random', ...
    'RandRotation', [-8 8], ...
    'RandXReflection', true);
```

3. 构建DenseNet模型

使用 `densenet201` 函数从深度学习工具箱中加载DenseNet-201模型。

```MATLAB
net = densenet201;
```

可以使用 `analyzeNetwork` 函数来可视化模型架构。

```MATLAB
analyzeNetwork(net);
```

4. 训练模型

使用 `trainingOptions` 函数来配置训练选项。

```MATLAB
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 50, ...
    'MiniBatchSize', 128, ...
    'VerboseFrequency', 50, ...
    'Plots', 'training-progress');
```

使用 `trainNetwork` 函数来训练模型。

```MATLAB
trainedNet = trainNetwork(augmentedTrainingSet, net, options);
```

5. 测试模型

使用 `classify` 函数来进行分类。

```MATLAB
predictedLabels = classify(trainedNet, testSet);
accuracy = mean(predictedLabels == testSet.Labels)
```

6. 可视化结果

使用 `montage` 函数来可视化测试集中的前20张图像及其分类结果。

```MATLAB
numImages = 20;
idx = randsample(numel(testSet.Files), numImages);
figure
montage(testSet.Files(idx), 'Size', [4 5]);
title('Test Images');

predictedLabels = classify(trainedNet, testSet);
label = cellstr(predictedLabels);
label = strcat(label, ", ", cellstr(num2str(testSet.Labels)));
groundTruth = cellstr(label);
groundTruth = strcat("Ground Truth: ", groundTruth);

predicted = cellstr(predictedLabels);
predicted = strcat("Prediction: ", predicted);

for i = 1:numImages
    text(i*32-25,32+10,groundTruth(idx(i)),'FontSize',8)
    text(i*32-25,32+20,predicted(idx(i)),'FontSize',8)
end
```

完整代码如下:

```MATLAB
cifar10Data = fullfile(tempdir, 'cifar-10-matlab');
if ~exist(cifar10Data, 'dir')
    cifar10Data = fullfile(toolboxdir('vision'), 'visiondata', 'cifar10');
    if ~exist(cifar10Data, 'dir')
        mkdir(cifar10Data);
        url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';
        helperCIFAR10Data.download(url, cifar10Data);
    end
end

[trainingImages, trainingLabels, testImages, testLabels] = helperCIFAR10Data.load(cifar10Data);

% Construct an imageDatastore object
trainingSet = imageDatastore(trainingImages, ...
    'labels', trainingLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

testSet = imageDatastore(testImages, ...
    'labels', testLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

% Prepare the data for training
inputSize = [32 32 3];
numClasses = 10;

% Apply data augmentation
augmentedTrainingSet = augmentedImageDatastore(inputSize, ...
    trainingSet, ...
    'ColorPreprocessing', 'gray2rgb', ...
    'RandCropSize', [28 28], ...
    'RandCropType', 'random', ...
    'RandRotation', [-8 8], ...
    'RandXReflection', true);

% Load pre-trained DenseNet-201 network
net = densenet201;

% Configure training options
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 50, ...
    'MiniBatchSize', 128, ...
    'VerboseFrequency', 50, ...
    'Plots', 'training-progress');

% Train the network
trainedNet = trainNetwork(augmentedTrainingSet, net, options);

% Test the network
predictedLabels = classify(trainedNet, testSet);
accuracy = mean(predictedLabels == testSet.Labels)

% Visualize the results
numImages = 20;
idx = randsample(numel(testSet.Files), numImages);
figure
montage(testSet.Files(idx), 'Size', [4 5]);
title('Test Images');

predictedLabels = classify(trainedNet, testSet);
label = cellstr(predictedLabels);
label = strcat(label, ", ", cellstr(num2str(testSet.Labels)));
groundTruth = cellstr(label);
groundTruth = strcat("Ground Truth: ", groundTruth);

predicted = cellstr(predictedLabels);
predicted = strcat("Prediction: ", predicted);

for i = 1:numImages
    text(i*32-25,32+10,groundTruth(idx(i)),'FontSize',8)
    text(i*32-25,32+20,predicted(idx(i)),'FontSize',8)
end
```

相关文章:

经典分类模型回顾5—DenseNet实现图像分类(matlab)

DenseNet,全称为Densely Connected Convolutional Networks,中文名为密集连接卷积网络,是由李沐等人在2017年提出的一种深度神经网络架构。 DenseNet旨在解决深度神经网络中的梯度消失问题和参数数量过多的问题,通过构建密集连接…...

基于flask+bootstrap+echarts+mysql的鱼村小馆订餐后台管理系统

📋 个人简介 💖 作者简介:大家好,我是阿牛,全栈领域优质创作者。😜📝 个人主页:馆主阿牛🔥🎉 支持我:点赞👍收藏⭐️留言&#x1f4d…...

Spark使用Log4j将日志发送到Kafka

文章目录自定义KafkaAppender修改log4j.properties配置启动命令配置添加参数启动之后可以在Kafka中查询发送数据时区问题-自定义实现JSONLayout解决自定义JSONLayout.java一键应用可能遇到的异常ClassNotFoundException: xxx.KafkaLog4jAppenderUnexpected problem occured dur…...

c++类与对象整理(上)

目录 1.类的引入 2.类的定义 3.类的访问限定符及封装 1)访问限定符 2)封装 4.类的作用域 5.类的实例化 6.类的对象大小的计算 1)类对象的存储方式 2)内存对齐和大小计算 ​编辑 7.类成员函数的this指针 1&#xff09…...

Docker学习(十九)什么是镜像的元数据?

在 Docker 中,镜像的元数据是指与镜像相关的所有信息,包括镜像的名称和标签、作者、描述、创建日期、环境变量、命令等。这些信息都是通过 Dockerfile 或命令行创建和指定的。 镜像的元数据被存储在 Docker Registry 中,并在使用 docker pull…...

Python如何获取弹幕?给你介绍两种方式

前言 弹幕可以给观众一种“实时互动”的错觉,虽然不同弹幕的发送时间有所区别,但是其只会在视频中特定的一个时间点出现,因此在相同时刻发送的弹幕基本上也具有相同的主题,在参与评论时就会有与其他观众同时评论的错觉。 在国内…...

JAVA- AOP 面向切面编程 Aspect切面工具类 记录特定方法执行时的入参、执行时间、返参等内容

背景:JAVA项目,使用AOP对指定函数进行切面。能够记录特定方法执行时的入参、执行时间、返参结果等内容。 文章目录1、自定义注解类1.1 Target1.2 Retention2、Aspect切面工具2.1 JointPoint2.2 Pointcut2.3 切面中的相关注解3、同一个类里调用AOP4、其他…...

「史上最全的 TCG 规范解读」TCG 规范架构概述(下)

可信计算组织(Ttrusted Computing Group,TCG)是一个非盈利的工业标准组织,它的宗旨是加强不同计算机平台上计算环境的安全性。TCG 于 2003 年春成立,并采纳了由可信计算平台联盟(the Trusted Computing Platform Allia…...

GDScript 导出变量 (4.0)

概述 导出变量的功能在3.x版本中也是有的,但是4.0版本对其进行了语法上的改进。 导出变量在日常的游戏制作中提供节点的自定义参数化调节功能时非常有用,除此之外还用于自定义资源。 本文是(Bilibili巽星石)在4.0官方文档《GDScr…...

JAVA知识点全面总结6:泛型反射和注解

六.JAVA知识点全面总结6泛型反射和注解 1.什么是泛型?可以用在哪里? 2.泛型擦除机制是什么?为什么擦除? 3.通配符是什么?作用是什么? 未更新 1.注解是什么?有什么用? 2.注解的自定义和实…...

死代码删除(DCE,Dead Code Elimination)和激进的死代码删除(ADCE,Aggressive DCE)

死代码删除(DCE,Dead Code Elimination)和激进的死代码删除(ADCE,Aggressive DCE)死代码删除(DCE,Dead Code Elimination)DCE简介DCE基本算法激进的死代码删除&#xff0…...

询问new bing关于android开发的15个问题(前景、未来、发展方向)

前言:new bing是基于chat-gpt的新搜索工具,可以采用对话方式进行问题搜索,经过排队等候终于可以使用new bing,询问了目前我最关心的关于android开发几个问题 文章目录1.如何学好android开发?2.android开发能做什么?3.…...

【C++】初识类和对象

🏖️作者:malloc不出对象 ⛺专栏:C的学习之路 👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈 目录前言一、面向过程和面向对象初步认识二…...

EPICS S7nodave手册

第一章:介绍 本手册分为6章(不算次介绍部分)。第一章介绍s7nodave用于EPICS的设备支持的概念和特新。第二章描述启动一个使用s7nodave的IOC项目所需要的几步。第三章描述s7nodave支持的IOC shell命令。之后,第四章解释s7nodave支持的各种记录类型。最后…...

2023最新版本RabbitMQ的持久化和简单使用

上节讲了 RabbitMQ下载安装教程 , 本节主要介绍RabbitMQ的持久化和简单使用。 一、RabbitMQ消息持久化 当处理一个比较耗时得任务的时候,也许想知道消费者(consumers)是否运行到一半就挂掉。在当前的代码中,当RabbitM…...

函数式编程

函数式编程(一) 文章目录函数式编程(一)1. 前言1.1 概念2. Lambda 表达式2.1 概述2.2 基本的格式2.3 触发条件2.4 Lambda表达式2.4.1 无参无返回值2.4.2 有参无返回值2.4.3 无参数有返回值2.4.4 有参有返回值【重点】2.4.4.1 比较…...

【Java 类】001-访问修饰符、命名规范

【Java 类】001-访问修饰符、命名规范 文章目录【Java 类】001-访问修饰符、命名规范一、访问修饰符概述1、是什么2、作用作用问题3、访问修饰符有哪些4、作用对象二、访问修饰符使用演示1、类访问修饰符演示第一步:创建 Dog 类:public第二步&#xff1a…...

【C++】命名空间

🏖️作者:malloc不出对象 ⛺专栏:C的学习之路 👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈 目录前言一、命名空间产生的背景二、命名空…...

【AutoSAR】【MCAL】Dio

一、结构 二、功能介绍 DIO(数字输入输出)驱动模块主要是对端口(Port),通道(Channel)和通道组(ChannelGroup)进行读写操作。 通道(Channel)&…...

瑞吉外卖——day2

目录 一、新增员工 二、查询分页数据 三、启用、禁用员工账户、编辑员工信息 一、新增员工 点击左上角新增员工 页面如下: 我们随便填数据 ,点击保存,请求的地址如下 返回前端可以看到请求方式为Post 在employeeController中编写对应的代…...

了解java

#常见编程语言介绍 C语言 C语言 java语言 javaScript语言 PHP语言 python语言Object-C和Swift语言 C# (c sharp)语言 Kotlin语言 Go语言 Basic语言 #JAVA的发展 起源于1991年SUN公司GREEN项目,1996年JDK1.0正式发布 后被Oracle公司收购&…...

【编程实践】代码之中有创意:“我一直认为工程师世界上最具创造性的工作之一”

代码之中有创意 “我一直认为工程师世界上最具创造性的工作之一”。 文章目录 代码之中有创意一、代码可以赋予创造力1.1 代码的创造力1.2 如何发挥代码的创造力二、有创意的代码可以提高工作效率2.1 代码创意可以提高工作效率2.2 如何利用代码创意来提高工作效率三、代码创意可…...

【MySQL】表连接

一、为什么要学习 因为不合理的使用连接会导致慢查询 二、什么是连接 参与连接的表叫做 连接表, 连接就是把 各个连接表 进行的组合 (笛卡儿积)加入结果集并返回 三、连接查询 如何只是对表进行大量的连接,笛卡儿积作用得到的…...

2023湖南省“楚怡杯”职业技能大赛“网络安全” 项目比赛任务书

2023湖南省“楚怡杯”职业技能大赛“网络安全” 项目比赛任务书2023安徽省“中银杯”职业技能大赛“网络安全” 项目比赛任务书A模块基础设施设置/安全加固(200分)A-1:登录安全加固(Windows, Linux)A-2:Ngi…...

Android应用启动优化笔记整理

应用启动相关流程与优化 应用启动主要涉及SystemServer进程 和 app进程。 SystemServer进程负责app进程创建和管理、窗口的创建和管理(StartingWindow 和 AppWindow)、应用的启动流程调度等。 App进程被创建后,进行一系列进程初始化、组件初…...

图像bytes字节串二进制转十六进制及bytes转为图像

目录前言正文二进制与十六进制的bytes互转读取bytes为图像法1:直接写入f.read的结果法2: 转换为PIL或Numpy前言 参考: 8. python基础之基础数据类型–bytes - CSDN python 16进制与图片互转 - CSDN 正文 二进制与十六进制的bytes互转 bytes保存的是原始的字节(二…...

信息安全与数学基础-笔记-②同余

知识目录同余完全剩余系剩余类完全剩余系❀简化剩余系❀欧拉函数逆元!欧拉定理 !同余 a,b 两个数字,都模m,当两个数字模m后余的数一样即为同余。 例子: a bq r (mod m),这里的a 和 r 就是同余 &#xff…...

网络安全法

目录正文第一章第二章第三章第四章第五章第六章 法律责任第七章 附则正文 学习网络安全应该知道网络安全法 第一章 总则 第一条: 为了保障网络安全,维护网络空间主权和国家安全、社会公共利益,保护公民、法人和其他组织的合法权益,促进经济…...

django框架开发部署项目

前言:相信看到这篇文章的小伙伴都或多或少有一些编程基础,懂得一些linux的基本命令了吧,本篇文章将带领大家服务器如何部署一个使用django框架开发的一个网站进行云服务器端的部署。 文章使用到的的工具 Python:一种编程语言&…...

Unity记录1.3-入门-第一阶段总结

文章首发及后续更新:https://mwhls.top/4447.html,无图/无目录/格式错误/更多相关请至首发页查看。 新的更新内容请到mwhls.top查看。 欢迎提出任何疑问及批评,非常感谢! 汇总:Unity 记录 摘要:第一阶段的总…...