当前位置: 首页 > news >正文

SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测

SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测

目录

    • SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.【SCI一区级】Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
3…data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
4.输出指标包括优化参数、精确度、召回率、精确率、F1分数。
数据集格式:
格拉姆角场(Gram Angle Field)和双通道PCNN(Pulse Coupled Neural Network)融合注意力机制是一种用于多特征分类预测的模型。下面我将逐步解释这个模型的各个组成部分:

格拉姆角场:格拉姆角场是一种用于描述特征之间关系的表示方法。在该模型中,特征被转化为格拉姆矩阵,然后通过计算格拉姆矩阵之间的角度,得到格拉姆角场。格拉姆角场可以捕捉特征之间的相关性和相互作用,用于提取更丰富的特征表示。

双通道PCNN:PCNN是一种神经网络模型,模拟了生物神经元之间的脉冲耦合行为。在该模型中,使用两个通道处理输入数据。一个通道用于提取空间特征,另一个通道用于提取时间特征。通过融合这两个通道的特征表示,可以更好地捕捉数据的时空信息。

注意力机制:注意力机制在多特征分类预测中起到关键作用。它可以学习数据中不同特征的重要性权重,以便更有效地融合多个特征表示。注意力机制可以使模型自动关注对分类任务更有贡献的特征,并降低对无关或冗余特征的依赖。

多特征分类预测:在得到融合后的特征表示之后,通常会使用分类器(如全连接层)进行最终的分类预测。分类器可以将模型的输出映射为表示不同类别概率的向量,从而进行分类预测。

综上所述,格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测模型结合了格拉姆角场、双通道PCNN和注意力机制的概念。通过这种方式,模型可以更好地利用多个特征的信息,并关注对分类任务更具意义的特征。这种模型在多特征分类问题中可能具有较好的性能。
在这里插入图片描述
注:程序和数据放在一个文件夹

模型描述

在这里插入图片描述

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng(0)                  % 使训练集、和测试集的随机划分与适应度函数一致%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
Numfeatures = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测

SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测 目录 SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 1.【SCI一区级】Matlab实…...

Observability:使用 OpenTelemetry 和 Elastic 监控 OpenAI API 和 GPT 模型

作者: 来自 Elastic David Hope ChatGPT 现在非常火爆,甚至席卷了整个互联网。 作为 ChatGPT 的狂热用户和 ChatGPT 应用程序的开发人员,我对这项技术的可能性感到非常兴奋。 我看到的情况是,基于 ChatGPT 的解决方案将会呈指数级…...

靡语IT:Vue精讲(一)

Vue简介 发端于2013年的个人项目,已然成为全世界三大前端框架之一,在中国大陆更是前端首选。 它的设计思想、编码技巧也被众多的框架借鉴、模仿。 纪略 2013年,在Google工作的尤雨溪,受到Angular的启发,从中提取自…...

vue3 toRefs之后的变量修改方法

上效果 修改值需要带上解构之前的对象名obj&#xff0c; changeName:()>{ // toRefs 解决后变量修改值方法&#xff1a; 解构前变量.字段新值 obj.name FEIFEI; } } 案例源码 <!DOCTYPE html> <html> <head><me…...

【教程】详解相机模型与坐标转换

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 由于复制过来&#xff0c;如果有格式问题&#xff0c;推荐大家直接去我原网站上查看&#xff1a; 相机模型与坐标转换 - 生活大爆炸 目录 经纬度坐标系 转 地球直角坐标系大地直角坐标系 转 经纬度坐标系地理坐标…...

171基于matlab的随机共振微弱信号检测

基于matlab的随机共振微弱信号检测&#xff0c;随机共振描述了过阻尼布朗粒子受周期性信号和随机噪声的共同作用下,在非线性双稳态系统中所发生的跃迁现象. 随机共振可用于弱信号的检测。程序已调通&#xff0c;可直接运行。...

petalinux_zynq7 驱动DAC以及ADC模块之三:实现C语言API并编译出库被python调用

前文&#xff1a; petalinux_zynq7 C语言驱动DAC以及ADC模块之一&#xff1a;建立IPhttps://blog.csdn.net/qq_27158179/article/details/136234296petalinux_zynq7 C语言驱动DAC以及ADC模块之二&#xff1a;petalinuxhttps://blog.csdn.net/qq_27158179/article/details/1362…...

NXP实战笔记(五):S32K3xx基于RTD-SDK在S32DS上配置ADC的硬件触发同步采样与软件采样过程

目录 1、概述 1.1、软件触发 1.2、硬件触发 - BCTU 1.3、硬件触发 - TRGMUX 1.4、ADC的校准 1.5、ADC时钟配置 2、BTCU硬件触发ADC的SDK配置 3、软件触发ADC 3.1、选择相应Port作为ADC的输入 3.2、ADC配置 3.3、代码示例 1、概述 恩智浦 S32K3xx 系列汽车微控制器…...

pikachu靶场-CSRF

CSRF: 介绍&#xff1a; Cross-site request forgery简称为"CSRF”。 在CSF的攻击场景中攻击者会伪造一个请求&#xff08;这个请求一般是一个链接&#xff09; 然后欺骗目标用户进行点击&#xff0c;用户一旦点击了这个请求&#xff0c;整个攻击也就完成了&#xff0…...

【结合OpenAI官方文档】解决Chatgpt的API接口请求速率限制

OpenAI API接口请求速率限制 速率限制以五种方式衡量&#xff1a;RPM&#xff08;每分钟请求数&#xff09;、RPD&#xff08;每天请求数&#xff09;、TPM&#xff08;每分钟令牌数&#xff09;、TPD&#xff08;每天令牌数&#xff09;和IPM&#xff08;每分钟图像数&#x…...

C语言实现基础数据结构——栈

目录 栈 栈的实现 数组栈 数组栈的实现 栈的初始化 栈的销毁 数据入栈 判断栈是否为空 数据出栈 获取栈顶元素 获取栈内数据个数 项目实现 栈的基础练习 有效的括号 栈 栈是一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的…...

船舶制造5G智能工厂数字孪生可视化平台,推进船舶行业数字化转型

船舶制造5G智能工厂数字孪生可视化平台&#xff0c;推进船舶行业数字化转型。随着数字化时代的到来&#xff0c;船舶行业正面临着前所未有的机遇与挑战。为了适应这一变革&#xff0c;船舶制造企业需要加快数字化转型的步伐&#xff0c;提高生产效率、降低成本并增强市场竞争力…...

【网络编程】okhttp深入理解

newCall 实际上是创建了一个 RealCall 有三个参数&#xff1a;OkHttpClient&#xff08;通用配置&#xff0c;超时时间等&#xff09; Request(Http请求所用到的条件&#xff0c;url等) 布尔变量forWebSocket&#xff08;webSocket是一种应用层的交互方式&#xff0c;可双向交互…...

大功率厚膜电阻器制造 – 优化性能?

通过优化工业大功率电阻器制造工艺&#xff0c;制造商可以提高电阻器的性能和可靠性、容差、额定电压、TCR、稳定性和额定功率。 在本文中&#xff0c;我们将介绍工业功率电阻器的制造过程。我们讨论了材料选择和生产技术及其对性能的潜在影响。 完美的电阻器 在其整个使用寿…...

ElasticStack安装(windows)

官网 : Elasticsearch 平台 — 大规模查找实时答案 | Elastic Elasticsearch Elastic Stack(一套技术栈) 包含了数据的整合 >提取 >存储 >使用&#xff0c;一整套! 各组件介绍: beats 套件:从各种不同类型的文件/应用中采集数据。比如:a,b,cd,e,aa,bb,ccLogstash:…...

gitlab的使用

前一篇文章我们已经知道Git人人都是中心&#xff0c;那他们怎么交互数据呢&#xff1f; • 使用GitHub或者码云等公共代码仓库 • 使用GitLab私有仓库 目录 一、安装配置gitlab 安装 初始化 这里初始化完成以后需要记住一个初始密码 查看状态 二、使用浏览器访问&#xf…...

基于springboot+vue的植物健康系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…...

Python爬虫实战入门:爬取360模拟翻译(仅实验)

文章目录 需求所需第三方库requests 实战教程打开网站抓包添加请求头等信息发送请求&#xff0c;解析数据修改翻译内容以及实现中英互译 完整代码 需求 目标网站&#xff1a;https://fanyi.so.com/# 要求&#xff1a;爬取360翻译数据包&#xff0c;实现翻译功能 所需第三方库 …...

微服务-微服务API网关Spring-clould-gateway实战

1. 需求背景 在微服务架构中&#xff0c;通常一个系统会被拆分为多个微服务&#xff0c;面对这么多微服务客户端应该如何去调用呢&#xff1f; 如果根据每个微服务的地址发起调用&#xff0c;存在如下问题&#xff1a; 1.客户端多次请求不同的微服务&#xff0c;会增加客户端…...

ECMAScript modules规范示例详解

ECMAScript modules&#xff08;简称 ES modules&#xff09;是JavaScript的标准模块系统。每个模块都是一个独立的JavaScript文件&#xff0c;可以在其中定义导出的变量、函数或类&#xff0c;并从其他模块中导入这些变量、函数或类。以下是ES modules规范的一些示例和详解&am…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...