当前位置: 首页 > news >正文

正则化概念及使用

正则化概念及使用

  • 正则化概念
  • 正则化原理
  • 常用的两种正则化方法
    • 1. L1 正则化(Lasso)
    • 2. L2 正则化(Ridge)
  • 正则化参数

正则化概念

在机器学习中,我们致力于通过从训练数据中学习模式或规律来构建模型。为了找到最佳的模型参数,我们定义了一个损失函数(或成本函数),它度量了模型预测与真实标签之间的差异。我们的目标是最小化这个损失函数,以使模型的预测尽可能接近真实标签。

然而,当模型过于复杂时,它可能会过度拟合训练数据,即在训练数据上表现很好,但在未见过的数据上表现不佳。为了防止过度拟合,我们引入了正则化技术。

正则化原理

正则化通过在损失函数中引入额外的惩罚项,迫使模型偏好较简单的解决方案。这个额外的惩罚项通常与模型参数相关,迫使模型在学习过程中不仅要最小化预测误差,还要尽量减小这个惩罚项的值。这样做的目的是平衡模型的拟合能力和泛化能力,防止过度拟合。

常用的两种正则化方法

在逻辑回归中,常用的正则化方法包括 L1 正则化(Lasso)和 L2 正则化(Ridge)。

1. L1 正则化(Lasso)

  • 概念:L1 正则化通过在损失函数中添加参数的 L1 范数作为惩罚项,倾向于产生稀疏的参数向量,从而实现特征选择。
  • 使用方式:在 Scikit-learn 的 LogisticRegression 类中,通过设置参数 penalty='l1' 来启用 L1 正则化。
  • 示例代码
    from sklearn.linear_model import LogisticRegression# 创建 LogisticRegression 模型并指定使用 L1 正则化
    logreg_l1 = LogisticRegression(penalty='l1', solver='liblinear')# 在训练数据上训练模型
    logreg_l1.fit(X_train, y_train)# 在测试数据上评估模型
    accuracy = logreg_l1.score(X_test, y_test)
    print("Accuracy with L1 regularization:", accuracy)
    
  • 调整参数:通过调整 C 参数来控制 L1 正则化的强度。C 越小,表示正则化的强度越大。

2. L2 正则化(Ridge)

  • 概念:L2 正则化通过在损失函数中添加参数的 L2 范数的平方作为惩罚项,倾向于使参数较小,减轻特征之间的共线性问题,并提高模型的泛化能力。
  • 使用方式:在 LogisticRegression 类中,默认情况下使用 L2 正则化,因此不需要额外设置。
  • 示例代码
    from sklearn.linear_model import LogisticRegression# 创建 LogisticRegression 模型,默认使用 L2 正则化
    logreg_l2 = LogisticRegression()# 在训练数据上训练模型
    logreg_l2.fit(X_train, y_train)# 在测试数据上评估模型
    accuracy = logreg_l2.score(X_test, y_test)
    print("Accuracy with L2 regularization:", accuracy)
    
  • 调整参数:通过调整 C 参数来控制 L2 正则化的强度。C 越小,表示正则化的强度越大。

正则化参数

在 Scikit-learn 的 LogisticRegression 中,正则化参数 C 的数值越小,表示正则化的强度越大。具体来说,C 是正则化参数的倒数。这意味着 C 的值越小,正则化的强度越大。更小的 C 值导致了更大的正则化惩罚,因此模型更倾向于选择较小的参数值,以减少过拟合的风险。相反,较大的 C 值会减轻正则化的影响,使模型更容易拟合训练数据,但也可能导致过度拟合。

通过调整 C 参数,我们可以平衡模型的拟合能力和泛化能力,以获得更好的性能。

通过了解正则化的原理和常用方法,我们可以更好地构建具有良好泛化能力的机器学习模型,从而在实际问题中取得更好的效果。

相关文章:

正则化概念及使用

正则化概念及使用 正则化概念正则化原理常用的两种正则化方法1. L1 正则化(Lasso)2. L2 正则化(Ridge) 正则化参数 正则化概念 在机器学习中,我们致力于通过从训练数据中学习模式或规律来构建模型。为了找到最佳的模型…...

让程序员设计B端界面,好比武大郎招聘:向我看齐。不忍直视!

hello,我是大美B端工场,B端系统的要求越来越高了,很多公司还让程序员负责页面,页面搞的没法看,也怪不得程序员。程序员来搞页面,那还不是武大郎招聘——向我看齐,以我的标准为标准吗&#xff1f…...

使用python构建Android,探索跨平台应用开发Kivy框架

使用python构建Android,探索跨平台应用开发Kivy框架 1. 介绍Kivy框架 Kivy是什么? Kivy是一个开源的Python跨平台应用程序开发框架,旨在帮助开发者快速构建创新的、可扩展的移动应用和多点触控应用。Kivy采用MIT许可证,允许开发…...

08 Redis之集群的搭建和复制原理+哨兵机制+CAP定理+Raft算法

5 Redis 集群 2.8版本之前, Redis采用主从集群模式. 实现了数据备份和读写分离 2.8版本之后, Redis采用Sentinel哨兵集群模式 , 实现了集群的高可用 5.1 主从集群搭建 首先, 基本所有系统 , “读” 的压力都大于 “写” 的压力 Redis 的主从集群是一个“一主多从”的读写分…...

*MYSQL--索引--内部原理

MYSQL的索引根据功能,主要有三大类型: 1.HASH索引 2.二叉树 3.BTREE索引 一:HASH索引 1.内部原理: 在设置了某列为索引列之后,并且开始或者将要在相应索引列创建数据的时候,系统通过某种算法 F(X) 自动计算出来一个十六进制的哈希值,这个哈希值能够对应相应的字段值 所以…...

docker安装kafka和kafka-console-ui

3、安装kafka https://blog.csdn.net/m0_64210833/article/details/134199061 kafka依赖Zookeeper,当然也可以用内置的kraft。 安装前提条件 1.安装Zookeeper 1.1运行ZooKeeper容器 2.运行Kafka容器 2.1启动Kafka容器 3.验证 3.1进入Kafka容器 3.2查看容器状态 3.3查…...

Linux:gitlab创建组,创建用户,创建项目

创建组和项目 让后可以在组里创建一个个仓库 创建成员 我创建个成员再把他分配进这个组里 进入管理员 密码等会我们创建完用户再去配置密码 Regular是普通的用户,只可以正常去访问指定规则的项目 而下面的administrator就是管理员,可以随便进项目&…...

相机选型介绍

摄影测量中,相机是非常重要的角色,合适的相机产出合适的图像,得到合适的重建精度,这是相机的重要性。 您也许第一反应是,摄影测量所需的理想相机,是有着超高分辨率的相机,但事实可能并非如此&a…...

SQL创建数据库

SQL,全称结构化查询语言(Structured Query Language),是一种用于管理关系型数据库的标准语言。通过 SQL,我们可以创建、查询、更新和删除数据库中的数据。今天,我们将学习使用SQL创建数据库。本文的目标是让读者了解如何使用SQL创…...

读书笔记-增强型分析:AI驱动的数据分析、业务决策与案例实践

目录 前言 运用人工智能技术,可以使人类社会变得更美好。人们总是期待产品更适合、服务更贴心、生活更便利。在实践中,技术给企业赋能,企业通过优质的产品和服务满足社会,提升人类福祉。很多金融企业已经开始尝试向潜在客户推送…...

NXP实战笔记(十):S32K3xx基于RTD-SDK在S32DS上配置CAN通信

目录 1、概述 2、SDK配置 2.1、配置目标 2.2、CAN配置 3、代码实现 4、测试结果 1、概述 S32K3xx的FlexCan与之前的S32K1xx很相似,Can的中断掩码寄存器(IMASK3)与中断标志位寄存器(IFLAG3)依赖于邮箱数。 FlexCan配置实例如下 FlexCan的整体图示如下 Protocol Engine…...

纳斯达克大屏-投放需要知道的几个条件-大舍传媒

引言 随着移动互联网的快速发展,数字广告媒体广告越来越受到企业的关注。纳斯达克大屏作为全球最大的数字媒体广告投放平台之一,拥有广泛的受众和优质的媒体资源,吸引了众多企业的眼球。要想在纳斯达克大屏上投放广告,企业需要了…...

python-可视化篇-简单-条形图输出主要省份GDP排名情况

条形图输出主要省份GDP排名情况 代码 gdp广东:97277.77:107671.07 江苏:92595.40:99631.52 山东:76469.70:71067.5 浙江:56197.00:62353 河南:48055.90:54259.2 四川:40678.10:46615.82 湖北:39366.60:45828.31 湖南:36425.78:39752.12 河北:36010.30:35104.5 福建:35804.04:…...

Sora - 探索AI视频模型的无限可能-官方报告解读与思考

一、引言 最近SORA火爆刷屏,我也忍不住找来官方报告分析了一下,本文将深入探讨OpenAI最新发布的Sora模型。Sora模型不仅仅是一个视频生成器,它代表了一种全新的数据驱动物理引擎,能够在虚拟世界中模拟现实世界的复杂现象。本文将重…...

算法提升——LeetCode第385场周赛总结

题目 统计前后缀下标对 I 给你一个下标从0开始的字符串数组words。 定义一个布尔函数isPrefixAndSuffix,它接受两个字符串参数str1和str2: 当str1同时是str2的前缀(prefix)和后缀(suffix)时&#xff0c…...

【README 小技巧】在项目README.md 中展示发布到maven 仓库版本

在项目README.md 中展示发不到nexus 的快照版本 <p align"center"><a target"_blank" href"https://search.maven.org/search?qwu-lazy-cloud-network%20wu-lazy-cloud-network"><img src"https://img-home.csdnimg.cn/ima…...

R语言【ClusterR】——KMeans_rcpp()

Package ClusterR version 1.3.2 Description 使用RcppArmadillo计算k-means。 Usage KMeans_rcpp(data,clusters,num_init = 1,max_iters = 100,initializer = "kmeans++",fuzzy = FALSE,verbose = FALSE,CENTROIDS = NULL,tol = 1e-04,tol_optimal_init = 0.3,se…...

7-liunx服务器规范

目录 概况liunx日志liunx系统日志syslog函数openlog 可以改变syslog默认输出方式 &#xff0c;进一步结构化 用户信息进程间的关系会话ps命令查看进程关系 系统资源限制改变工作目录和根目录服务器程序后台话 概况 liunx服务器上有很多细节需要注意 &#xff0c;这些细节很重要…...

java序列化之Jackson

当涉及到在Java中进行JSON序列化和反序列化时,Jackson和Gson是两个最常用的库。它们都提供了强大的功能来处理JSON数据,但在某些方面有一些不同之处。 Jackson Jackson 是一个功能强大且灵活的 JSON 处理库,由 FasterXML 维护。以下是 Jackson 的一些特点 强大的功能 Ja…...

服务区智慧公厕

在如今追求智能化、便捷化的社会背景下&#xff0c;高速公路服务区智慧公厕正成为人们关注的焦点。作为高速公路上的必要设施&#xff0c;公厕的提升已经不再局限于简单的清洁卫生&#xff0c;而是更多地涉及到智能化、舒适度和用户体验。本文以智慧公厕源头厂家广州中期科技有…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...