【数据结构与算法】(19)高级数据结构与算法设计之 图 拓扑排序 最短路径 最小生成树 不相交集合(并查集合)代码示例
目录
- 6) 拓扑排序
- Kahn
- DFS
- 7) 最短路径
- Dijkstra
- Bellman-Ford
- Floyd-Warshall
- 8) 最小生成树
- Prim
- Kruskal
- 9) 不相交集合(并查集合)
- 基础
- 路径压缩
- Union By Size
- 图-相关题目
6) 拓扑排序
Kahn
public class TopologicalSort {public static void main(String[] args) {Vertex v1 = new Vertex("网页基础");Vertex v2 = new Vertex("Java基础");Vertex v3 = new Vertex("JavaWeb");Vertex v4 = new Vertex("Spring框架");Vertex v5 = new Vertex("微服务框架");Vertex v6 = new Vertex("数据库");Vertex v7 = new Vertex("实战项目");v1.edges = List.of(new Edge(v3)); // +1v2.edges = List.of(new Edge(v3)); // +1v3.edges = List.of(new Edge(v4));v6.edges = List.of(new Edge(v4));v4.edges = List.of(new Edge(v5));v5.edges = List.of(new Edge(v7));v7.edges = List.of();List<Vertex> graph = List.of(v1, v2, v3, v4, v5, v6, v7);// 1. 统计每个顶点的入度for (Vertex v : graph) {for (Edge edge : v.edges) {edge.linked.inDegree++;}}/*for (Vertex vertex : graph) {System.out.println(vertex.name + " " + vertex.inDegree);}*/// 2. 将入度为0的顶点加入队列LinkedList<Vertex> queue = new LinkedList<>();for (Vertex v : graph) {if (v.inDegree == 0) {queue.offer(v);}}// 3. 队列中不断移除顶点,每移除一个顶点,把它相邻顶点入度减1,若减到0则入队List<String> result = new ArrayList<>();while (!queue.isEmpty()) {Vertex poll = queue.poll();
// System.out.println(poll.name);result.add(poll.name);for (Edge edge : poll.edges) {edge.linked.inDegree--;if (edge.linked.inDegree == 0) {queue.offer(edge.linked);}}}if (result.size() != graph.size()) {System.out.println("出现环");} else {for (String key : result) {System.out.println(key);}}}
}
DFS
public class TopologicalSortDFS {public static void main(String[] args) {Vertex v1 = new Vertex("网页基础");Vertex v2 = new Vertex("Java基础");Vertex v3 = new Vertex("JavaWeb");Vertex v4 = new Vertex("Spring框架");Vertex v5 = new Vertex("微服务框架");Vertex v6 = new Vertex("数据库");Vertex v7 = new Vertex("实战项目");v1.edges = List.of(new Edge(v3));v2.edges = List.of(new Edge(v3));v3.edges = List.of(new Edge(v4));v6.edges = List.of(new Edge(v4));v4.edges = List.of(new Edge(v5));v5.edges = List.of(new Edge(v7));v7.edges = List.of();List<Vertex> graph = List.of(v1, v2, v3, v4, v5, v6, v7);LinkedList<String> result = new LinkedList<>();for (Vertex v : graph) {if(v.status==0) {dfs(v, result);}}System.out.println(result);}private static void dfs(Vertex v, LinkedList<String> result) {if (v.status == 2) {return;}if (v.status == 1) {throw new RuntimeException("发现环");}v.status = 1;for (Edge edge : v.edges) {dfs(edge.linked, result);}v.status = 2;result.push(v.name);}
}
7) 最短路径
Dijkstra
Edsger Wybe Dijkstra
艾兹格·维布·迪克斯特拉(Edsger Wybe Dijkstra,/ˈdaɪkstrə/ DYKE-strə;荷兰语:[ˈɛtsxər ˈʋibə ˈdɛikstra] 1930年5月11日-2002年8月6日)是一位荷兰计算机科学家、程序员、软件工程师、系统科学家和科学散文家。他因对开发结构化编程语言做出的基础贡献而获得了1972年的图灵奖,并担任德克萨斯大学奥斯汀分校的斯伦贝谢百年计算机科学主席,任职时间从1984年到2000年。在他于2002年去世前不久,他因其在程序计算的自稳定性方面的工作而获得了ACM PODC分布式计算有影响力论文奖。为了纪念他,该年度奖项在接下来的一年更名为迪克斯特拉奖。
迪克斯特拉在计算机科学领域的贡献
- 最短路径算法,也称为迪克斯特拉算法,现代计算机科学本科课程中广泛教授
- Shunting yard算法
- THE OS 操作系统
- 银行家算法
- 用于协调多个处理器和程序的信号量构造
- 在分布式计算领域提出概念:自稳定性
算法描述:
- 将所有顶点标记为未访问。创建一个未访问顶点的集合。
- 为每个顶点分配一个临时距离值
- 对于我们的初始顶点,将其设置为零
- 对于所有其他顶点,将其设置为无穷大。
- 每次选择最小临时距离的未访问顶点,作为新的当前顶点
- 对于当前顶点,遍历其所有未访问的邻居,并更新它们的临时距离为更小
- 例如,1->6 的距离是 14,而1->3->6 的距离是11。这时将距离更新为 11
- 否则,将保留上次距离值
- 当前顶点的邻居处理完成后,把它从未访问集合中删除
public class Dijkstra {public static void main(String[] args) {Vertex v1 = new Vertex("v1");Vertex v2 = new Vertex("v2");Vertex v3 = new Vertex("v3");Vertex v4 = new Vertex("v4");Vertex v5 = new Vertex("v5");Vertex v6 = new Vertex("v6");v1.edges = List.of(new Edge(v3, 9), new Edge(v2, 7), new Edge(v6, 14));v2.edges = List.of(new Edge(v4, 15));v3.edges = List.of(new Edge(v4, 11), new Edge(v6, 2));v4.edges = List.of(new Edge(v5, 6));v5.edges = List.of();v6.edges = List.of(new Edge(v5, 9));List<Vertex> graph = List.of(v1, v2, v3, v4, v5, v6);dijkstra(graph, v1);}private static void dijkstra(List<Vertex> graph, Vertex source) {ArrayList<Vertex> list = new ArrayList<>(graph);source.dist = 0;while (!list.isEmpty()) {// 3. 选取当前顶点Vertex curr = chooseMinDistVertex(list);// 4. 更新当前顶点邻居距离updateNeighboursDist(curr, list);// 5. 移除当前顶点list.remove(curr);}for (Vertex v : graph) {System.out.println(v.name + " " + v.dist);}}private static void updateNeighboursDist(Vertex curr, ArrayList<Vertex> list) {for (Edge edge : curr.edges) {Vertex n = edge.linked;if (list.contains(n)) {int dist = curr.dist + edge.weight;if (dist < n.dist) {n.dist = dist;}}}}private static Vertex chooseMinDistVertex(ArrayList<Vertex> list) {Vertex min = list.get(0);for (int i = 1; i < list.size(); i++) {if (list.get(i).dist < min.dist) {min = list.get(i);}}return min;}}
改进 - 优先级队列
- 创建一个优先级队列,放入所有顶点(队列大小会达到边的数量)
- 为每个顶点分配一个临时距离值
- 对于我们的初始顶点,将其设置为零
- 对于所有其他顶点,将其设置为无穷大。
- 每次选择最小临时距离的未访问顶点,作为新的当前顶点
- 对于当前顶点,遍历其所有未访问的邻居,并更新它们的临时距离为更小,若距离更新需加入队列
- 例如,1->6 的距离是 14,而1->3->6 的距离是11。这时将距离更新为 11
- 否则,将保留上次距离值
- 当前顶点的邻居处理完成后,把它从队列中删除
public class DijkstraPriorityQueue {public static void main(String[] args) {Vertex v1 = new Vertex("v1");Vertex v2 = new Vertex("v2");Vertex v3 = new Vertex("v3");Vertex v4 = new Vertex("v4");Vertex v5 = new Vertex("v5");Vertex v6 = new Vertex("v6");v1.edges = List.of(new Edge(v3, 9), new Edge(v2, 7), new Edge(v6, 14));v2.edges = List.of(new Edge(v4, 15));v3.edges = List.of(new Edge(v4, 11), new Edge(v6, 2));v4.edges = List.of(new Edge(v5, 6));v5.edges = List.of();v6.edges = List.of(new Edge(v5, 9));List<Vertex> graph = List.of(v1, v2, v3, v4, v5, v6);dijkstra(graph, v1);}private static void dijkstra(List<Vertex> graph, Vertex source) {PriorityQueue<Vertex> queue = new PriorityQueue<>(Comparator.comparingInt(v -> v.dist));source.dist = 0;for (Vertex v : graph) {queue.offer(v);}while (!queue.isEmpty()) {System.out.println(queue);// 3. 选取当前顶点Vertex curr = queue.peek();// 4. 更新当前顶点邻居距离if(!curr.visited) {updateNeighboursDist(curr, queue);curr.visited = true;}// 5. 移除当前顶点queue.poll();}for (Vertex v : graph) {System.out.println(v.name + " " + v.dist + " " + (v.prev != null ? v.prev.name : "null"));}}private static void updateNeighboursDist(Vertex curr, PriorityQueue<Vertex> queue) {for (Edge edge : curr.edges) {Vertex n = edge.linked;if (!n.visited) {int dist = curr.dist + edge.weight;if (dist < n.dist) {n.dist = dist;n.prev = curr;queue.offer(n);}}}}}
问题
按照 Dijkstra 算法,得出
- v1 -> v2 最短距离2
- v1 -> v3 最短距离1
- v1 -> v4 最短距离2
事实应当是
- v1 -> v2 最短距离2
- v1 -> v3 最短距离0
- v1 -> v4 最短距离1
Bellman-Ford
public class BellmanFord {public static void main(String[] args) {// 正常情况/*Vertex v1 = new Vertex("v1");Vertex v2 = new Vertex("v2");Vertex v3 = new Vertex("v3");Vertex v4 = new Vertex("v4");Vertex v5 = new Vertex("v5");Vertex v6 = new Vertex("v6");v1.edges = List.of(new Edge(v3, 9), new Edge(v2, 7), new Edge(v6, 14));v2.edges = List.of(new Edge(v4, 15));v3.edges = List.of(new Edge(v4, 11), new Edge(v6, 2));v4.edges = List.of(new Edge(v5, 6));v5.edges = List.of();v6.edges = List.of(new Edge(v5, 9));List<Vertex> graph = List.of(v4, v5, v6, v1, v2, v3);*/// 负边情况/*Vertex v1 = new Vertex("v1");Vertex v2 = new Vertex("v2");Vertex v3 = new Vertex("v3");Vertex v4 = new Vertex("v4");v1.edges = List.of(new Edge(v2, 2), new Edge(v3, 1));v2.edges = List.of(new Edge(v3, -2));v3.edges = List.of(new Edge(v4, 1));v4.edges = List.of();List<Vertex> graph = List.of(v1, v2, v3, v4);*/// 负环情况Vertex v1 = new Vertex("v1");Vertex v2 = new Vertex("v2");Vertex v3 = new Vertex("v3");Vertex v4 = new Vertex("v4");v1.edges = List.of(new Edge(v2, 2));v2.edges = List.of(new Edge(v3, -4));v3.edges = List.of(new Edge(v4, 1), new Edge(v1, 1));v4.edges = List.of();List<Vertex> graph = List.of(v1, v2, v3, v4);bellmanFord(graph, v1);}private static void bellmanFord(List<Vertex> graph, Vertex source) {source.dist = 0;int size = graph.size();// 1. 进行 顶点个数 - 1 轮处理for (int i = 0; i < size - 1; i++) {// 2. 遍历所有的边for (Vertex s : graph) {for (Edge edge : s.edges) {// 3. 处理每一条边Vertex e = edge.linked;if (s.dist != Integer.MAX_VALUE && s.dist + edge.weight < e.dist) {e.dist = s.dist + edge.weight;e.prev = s;}}}}for (Vertex v : graph) {System.out.println(v + " " + (v.prev != null ? v.prev.name : "null"));}}
}
负环
如果在【顶点-1】轮处理完成后,还能继续找到更短距离,表示发现了负环
Floyd-Warshall
public class FloydWarshall {public static void main(String[] args) {Vertex v1 = new Vertex("v1");Vertex v2 = new Vertex("v2");Vertex v3 = new Vertex("v3");Vertex v4 = new Vertex("v4");v1.edges = List.of(new Edge(v3, -2));v2.edges = List.of(new Edge(v1, 4), new Edge(v3, 3));v3.edges = List.of(new Edge(v4, 2));v4.edges = List.of(new Edge(v2, -1));List<Vertex> graph = List.of(v1, v2, v3, v4);/*直接连通v1 v2 v3 v4v1 0 ∞ -2 ∞v2 4 0 3 ∞v3 ∞ ∞ 0 2v4 ∞ -1 ∞ 0k=0 借助v1到达其它顶点v1 v2 v3 v4v1 0 ∞ -2 ∞v2 4 0 2 ∞v3 ∞ ∞ 0 2v4 ∞ -1 ∞ 0k=1 借助v2到达其它顶点v1 v2 v3 v4v1 0 ∞ -2 ∞v2 4 0 2 ∞v3 ∞ ∞ 0 2v4 3 -1 1 0k=2 借助v3到达其它顶点v1 v2 v3 v4v1 0 ∞ -2 0v2 4 0 2 4v3 ∞ ∞ 0 2v4 3 -1 1 0k=3 借助v4到达其它顶点v1 v2 v3 v4v1 0 -1 -2 0v2 4 0 2 4v3 5 1 0 2v4 3 -1 1 0*/floydWarshall(graph);}static void floydWarshall(List<Vertex> graph) {int size = graph.size();int[][] dist = new int[size][size];Vertex[][] prev = new Vertex[size][size];// 1)初始化for (int i = 0; i < size; i++) {Vertex v = graph.get(i); // v1 (v3)Map<Vertex, Integer> map = v.edges.stream().collect(Collectors.toMap(e -> e.linked, e -> e.weight));for (int j = 0; j < size; j++) {Vertex u = graph.get(j); // v3if (v == u) {dist[i][j] = 0;} else {dist[i][j] = map.getOrDefault(u, Integer.MAX_VALUE);prev[i][j] = map.get(u) != null ? v : null;}}}print(prev);// 2)看能否借路到达其它顶点/*v2->v1 v1->v?dist[1][0] + dist[0][0]dist[1][0] + dist[0][1]dist[1][0] + dist[0][2]dist[1][0] + dist[0][3]*/for (int k = 0; k < size; k++) {for (int i = 0; i < size; i++) {for (int j = 0; j < size; j++) {
// dist[i][k] + dist[k][j] // i行的顶点,借助k顶点,到达j列顶点
// dist[i][j] // i行顶点,直接到达j列顶点if (dist[i][k] != Integer.MAX_VALUE &&dist[k][j] != Integer.MAX_VALUE &&dist[i][k] + dist[k][j] < dist[i][j]) {dist[i][j] = dist[i][k] + dist[k][j];prev[i][j] = prev[k][j];}}}
// print(dist);}print(prev);}static void path(Vertex[][] prev, List<Vertex> graph, int i, int j) {LinkedList<String> stack = new LinkedList<>();System.out.print("[" + graph.get(i).name + "," + graph.get(j).name + "] ");stack.push(graph.get(j).name);while (i != j) {Vertex p = prev[i][j];stack.push(p.name);j = graph.indexOf(p);}System.out.println(stack);}static void print(int[][] dist) {System.out.println("-------------");for (int[] row : dist) {System.out.println(Arrays.stream(row).boxed().map(x -> x == Integer.MAX_VALUE ? "∞" : String.valueOf(x)).map(s -> String.format("%2s", s)).collect(Collectors.joining(",", "[", "]")));}}static void print(Vertex[][] prev) {System.out.println("-------------------------");for (Vertex[] row : prev) {System.out.println(Arrays.stream(row).map(v -> v == null ? "null" : v.name).map(s -> String.format("%5s", s)).collect(Collectors.joining(",", "[", "]")));}}}
负环
如果在 3 层循环结束后,在 dist 数组的对角线处(i==j 处)发现了负数,表示出现了负环
8) 最小生成树
Prim
public class Prim {public static void main(String[] args) {Vertex v1 = new Vertex("v1");Vertex v2 = new Vertex("v2");Vertex v3 = new Vertex("v3");Vertex v4 = new Vertex("v4");Vertex v5 = new Vertex("v5");Vertex v6 = new Vertex("v6");Vertex v7 = new Vertex("v7");v1.edges = List.of(new Edge(v2, 2), new Edge(v3, 4), new Edge(v4, 1));v2.edges = List.of(new Edge(v1, 2), new Edge(v4, 3), new Edge(v5, 10));v3.edges = List.of(new Edge(v1, 4), new Edge(v4, 2), new Edge(v6, 5));v4.edges = List.of(new Edge(v1, 1), new Edge(v2, 3), new Edge(v3, 2),new Edge(v5, 7), new Edge(v6, 8), new Edge(v7, 4));v5.edges = List.of(new Edge(v2, 10), new Edge(v4, 7), new Edge(v7, 6));v6.edges = List.of(new Edge(v3, 5), new Edge(v4, 8), new Edge(v7, 1));v7.edges = List.of(new Edge(v4, 4), new Edge(v5, 6), new Edge(v6, 1));List<Vertex> graph = List.of(v1, v2, v3, v4, v5, v6, v7);prim(graph, v1);}static void prim(List<Vertex> graph, Vertex source) {ArrayList<Vertex> list = new ArrayList<>(graph);source.dist = 0;while (!list.isEmpty()) {Vertex min = chooseMinDistVertex(list);updateNeighboursDist(min);list.remove(min);min.visited = true;System.out.println("---------------");for (Vertex v : graph) {System.out.println(v);}}}private static void updateNeighboursDist(Vertex curr) {for (Edge edge : curr.edges) {Vertex n = edge.linked;if (!n.visited) {int dist = edge.weight;if (dist < n.dist) {n.dist = dist;n.prev = curr;}}}}private static Vertex chooseMinDistVertex(ArrayList<Vertex> list) {Vertex min = list.get(0);for (int i = 1; i < list.size(); i++) {if (list.get(i).dist < min.dist) {min = list.get(i);}}return min;}
}
Kruskal
public class Kruskal {static class Edge implements Comparable<Edge> {List<Vertex> vertices;int start;int end;int weight;public Edge(List<Vertex> vertices, int start, int end, int weight) {this.vertices = vertices;this.start = start;this.end = end;this.weight = weight;}public Edge(int start, int end, int weight) {this.start = start;this.end = end;this.weight = weight;}@Overridepublic int compareTo(Edge o) {return Integer.compare(this.weight, o.weight);}@Overridepublic String toString() {return vertices.get(start).name + "<->" + vertices.get(end).name + "(" + weight + ")";}}public static void main(String[] args) {Vertex v1 = new Vertex("v1");Vertex v2 = new Vertex("v2");Vertex v3 = new Vertex("v3");Vertex v4 = new Vertex("v4");Vertex v5 = new Vertex("v5");Vertex v6 = new Vertex("v6");Vertex v7 = new Vertex("v7");List<Vertex> vertices = List.of(v1, v2, v3, v4, v5, v6, v7);PriorityQueue<Edge> queue = new PriorityQueue<>(List.of(new Edge(vertices,0, 1, 2),new Edge(vertices,0, 2, 4),new Edge(vertices,0, 3, 1),new Edge(vertices,1, 3, 3),new Edge(vertices,1, 4, 10),new Edge(vertices,2, 3, 2),new Edge(vertices,2, 5, 5),new Edge(vertices,3, 4, 7),new Edge(vertices,3, 5, 8),new Edge(vertices,3, 6, 4),new Edge(vertices,4, 6, 6),new Edge(vertices,5, 6, 1)));kruskal(vertices.size(), queue);}static void kruskal(int size, PriorityQueue<Edge> queue) {List<Edge> result = new ArrayList<>();DisjointSet set = new DisjointSet(size);while (result.size() < size - 1) {Edge poll = queue.poll();int s = set.find(poll.start);int e = set.find(poll.end);if (s != e) {result.add(poll);set.union(s, e);}}for (Edge edge : result) {System.out.println(edge);}}
}
9) 不相交集合(并查集合)
基础
public class DisjointSet {int[] s;// 索引对应顶点// 元素是用来表示与之有关系的顶点/*索引 0 1 2 3 4 5 6元素 [0, 1, 2, 3, 4, 5, 6] 表示一开始顶点直接没有联系(只与自己有联系)*/public DisjointSet(int size) {s = new int[size];for (int i = 0; i < size; i++) {s[i] = i;}}// find 是找到老大public int find(int x) {if (x == s[x]) {return x;}return find(s[x]);}// union 是让两个集合“相交”,即选出新老大,x、y 是原老大索引public void union(int x, int y) {s[y] = x;}@Overridepublic String toString() {return Arrays.toString(s);}}
路径压缩
public int find(int x) { // x = 2if (x == s[x]) {return x;}return s[x] = find(s[x]); // 0 s[2]=0
}
Union By Size
public class DisjointSetUnionBySize {int[] s;int[] size;public DisjointSetUnionBySize(int size) {s = new int[size];this.size = new int[size];for (int i = 0; i < size; i++) {s[i] = i;this.size[i] = 1;}}// find 是找到老大 - 优化:路径压缩public int find(int x) { // x = 2if (x == s[x]) {return x;}return s[x] = find(s[x]); // 0 s[2]=0}// union 是让两个集合“相交”,即选出新老大,x、y 是原老大索引public void union(int x, int y) {
// s[y] = x;if (size[x] < size[y]) {int t = x;x = y;y = t;}s[y] = x;size[x] = size[x] + size[y];}@Overridepublic String toString() {return "内容:"+Arrays.toString(s) + "\n大小:" + Arrays.toString(size);}public static void main(String[] args) {DisjointSetUnionBySize set = new DisjointSetUnionBySize(5);set.union(1, 2);set.union(3, 4);set.union(1, 3);System.out.println(set);}}
图-相关题目
题目编号 | 题目标题 | 算法思想 |
---|---|---|
547 | 省份数量 | DFS、BFS、并查集 |
797 | 所有可能路径 | DFS、BFS |
1584 | 连接所有点的最小费用 | 最小生成树 |
743 | 网络延迟时间 | 单源最短路径 |
787 | K 站中转内最便宜的航班 | 单源最短路径 |
207 | 课程表 | 拓扑排序 |
210 | 课程表 II | 拓扑排序 |
相关文章:

【数据结构与算法】(19)高级数据结构与算法设计之 图 拓扑排序 最短路径 最小生成树 不相交集合(并查集合)代码示例
目录 6) 拓扑排序KahnDFS 7) 最短路径DijkstraBellman-FordFloyd-Warshall 8) 最小生成树PrimKruskal 9) 不相交集合(并查集合)基础路径压缩Union By Size 图-相关题目 6) 拓扑排序 #mermaid-svg-MQhLsXiMwnlUL3q4 {font-family:"trebuchet ms"…...

OSCP靶场--Nickel
OSCP靶场–Nickel 考点(1.POST方法请求信息 2.ftp,ssh密码复用 3.pdf文件密码爆破) 1.nmap扫描 ┌──(root㉿kali)-[~/Desktop] └─# nmap 192.168.237.99 -sV -sC -p- --min-rate 5000 Starting Nmap 7.92 ( https://nmap.org ) at 2024-02-22 04:06 EST Nm…...

新建工程——库函数版
新建工程——库函数版 s t e p I : 新建工程文件夹 \bf{stepI:新建工程文件夹} stepI:新建工程文件夹 s t e p I I : K e i l 5 新建工程 \bf{stepII:Keil5新建工程} stepII:Keil5新建工程 s t e p I I I : 最终得到工程文件 \bf{stepIII:最终得到工程文件} stepIII:最终得到工…...

java 数据结构栈和队列
目录 栈(Stack) 栈的使用 栈的模拟实现 栈的应用场景 队列(Queue) 队列的使用 队列模拟实现 循环队列 双端队列 用队列实现栈 用栈实现队列 栈(Stack) 什么是栈? 栈 :一种特殊的线性表,其 只允许在固定的一端进行插入和删除元素操…...

#LLM入门|Prompt#1.8_聊天机器人_Chatbot
聊天机器人设计 以会话形式进行交互,接受一系列消息作为输入,并返回模型生成的消息作为输出。原本设计用于简便多轮对话,但同样适用于单轮任务。 设计思路 个性化特性:通过定制模型的训练数据和参数,使机器人拥有特…...

LeetCode 2476.二叉搜索树最近节点查询:中序遍历 + 二分查找
【LetMeFly】2476.二叉搜索树最近节点查询:中序遍历 二分查找 力扣题目链接:https://leetcode.cn/problems/closest-nodes-queries-in-a-binary-search-tree/ 给你一个 二叉搜索树 的根节点 root ,和一个由正整数组成、长度为 n 的数组 qu…...

选座位 - 华为OD统一考试(C卷)
OD统一考试(C卷) 分值: 200分 题解: Java / Python / C 题目描述 疫情期间,需要大家保证一定的社交距离,公司组织开交流会议,座位有一排共N个座位,编号分别为[0…N-1],要…...

【微服务】mybatis typehandler使用详解
目录 一、前言 二、TypeHandler简介 2.1 什么是TypeHandler 2.1.1 TypeHandler特点 2.2 TypeHandler原理 2.3 mybatis自带的TypeHandler 三、环境准备 3.1 准备一张数据表 3.2 搭建一个springboot工程 3.2.1 基础依赖如下 3.2.2 核心配置文件 3.2.3 测试接口 四、T…...

计网 - 深入理解HTTPS:加密技术的背后
文章目录 Pre发展历史Http VS HttpsHTTPS 解决了 HTTP 的哪些问题HTTPS是如何解决上述三个风险的混合加密摘要算法 数字签名数字证书 Pre PKI - 数字签名与数字证书 PKI - 借助Nginx 实现Https 服务端单向认证、服务端客户端双向认证 发展历史 HTTP(超文本传输协…...

Jmeter之单接口的性能测试
前言: 服务端的整体性能测试是一个非常复杂的概念,包含生成虚拟用户,模拟并发,分析性能结果等各种技术,期间可能还要解决设计场景、缓存影响、第三方接口mock、IP限制等问题。如何用有限的测试机器,在测试环…...
成像光谱遥感技术中的AI革命:ChatGPT应用指南
“成像光谱遥感技术中的人工智能革命:ChatGPT应用指南”,这是一门旨在改变您使用人工智能处理遥感数据的方式。将最新的人工智能技术与实际的遥感应用相结合,提供不仅是理论上的,而且是适用和可靠的工具和方法。无论你是经验丰富的…...

掌握BeautifulSoup4:爬虫解析器的基础与实战【第91篇—BeautifulSoup4】
掌握BeautifulSoup4:爬虫解析器的基础与实战 网络上的信息浩如烟海,而爬虫技术正是帮助我们从中获取有用信息的重要工具。在爬虫过程中,解析HTML页面是一个关键步骤,而BeautifulSoup4正是一款功能强大的解析器,能够轻…...

从源码解析Kruise(K8S)原地升级原理
从源码解析Kruise原地升级原理 本文从源码的角度分析 Kruise 原地升级相关功能的实现。 本篇Kruise版本为v1.5.2。 Kruise项目地址: https://github.com/openkruise/kruise 更多云原生、K8S相关文章请点击【专栏】查看! 原地升级的概念 当我们使用deployment等Wor…...

2024年【广东省安全员C证第四批(专职安全生产管理人员)】复审考试及广东省安全员C证第四批(专职安全生产管理人员)模拟考试题
题库来源:安全生产模拟考试一点通公众号小程序 广东省安全员C证第四批(专职安全生产管理人员)复审考试是安全生产模拟考试一点通总题库中生成的一套广东省安全员C证第四批(专职安全生产管理人员)模拟考试题࿰…...

udp服务器【Linux网络编程】
目录 一、UDP服务器 1、创建套接字 2、绑定套接字 3、运行 1)读取数据 2)发送数据 二、UDP客户端 创建套接字: 客户端不用手动bind 收发数据 处理消息和网络通信解耦 三、应用场景 1、服务端执行命令 2、Windows上的客户端 3…...

【k8s资源调度-Deployment】
1、标签和选择器 1.1 标签Label 配置文件:在各类资源的sepc.metadata.label 中进行配置通过kubectl 命令行创建修改标签,语法如下 创建临时label:kubectl label po <资源名称> apphello -n <命令空间(可不加࿰…...

【Oracle】玩转Oracle数据库(五):PL/SQL编程
前言 嗨,各位数据库达人!准备好迎接数据库编程的新挑战了吗?今天我们要探索的是Oracle数据库中的神秘魔法——PL/SQL编程!🔮💻 在这篇博文【Oracle】玩转Oracle数据库(五)࿱…...

JavaScript流程控制
文章目录 1. 顺序结构2. 分支结构2.1 if 语句2.2 if else 双分支语句2.3 if else if 多分支语句三元表达式 2.4 switch 语句switch 语句和 if else if语句区别 3. 循环结构3.1 for 循环断点调试 3.2 双重 for 循环3.3 while 循环3.4 do while 循环3.5 contiue break 关键字 4. …...
五个使用Delphi语言进行开发的案例
案例一:学生信息管理系统 某学校需要开发一个学生信息管理系统,用于记录学生的基本信息、成绩和考勤情况等。开发者使用Delphi语言进行开发,设计了一个包含多个窗体的应用程序。主窗体用于展示学生的列表和基本信息,其他窗体则用…...
蓝桥杯第1374题——锻造兵器
题目描述 小明一共有n块锻造石,第块锻造石的属性值为ai. 现在小明决定从这n块锻造石中任取两块来锻造兵器 通过周密计算,小明得出,只有当两块锻造石的属性值的差值等于C,兵器才能锻造成功 请你帮小明算算,他有多少种选…...

3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...

云原生安全实战:API网关Envoy的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口,负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...
Django RBAC项目后端实战 - 03 DRF权限控制实现
项目背景 在上一篇文章中,我们完成了JWT认证系统的集成。本篇文章将实现基于Redis的RBAC权限控制系统,为系统提供细粒度的权限控制。 开发目标 实现基于Redis的权限缓存机制开发DRF权限控制类实现权限管理API配置权限白名单 前置配置 在开始开发权限…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...