Elasticsearch 去重后求和
标题的要求可以用如下 SQL 表示
select sum(column2) from (select distinct(column1),column2 from table)t
要如何用 DSL 实现呢,先准备下索引和数据
PUT test_index
{"mappings": {"properties": {"column1": {"type": "keyword"},"column2": {"type": "long"}}}
}
PUT test_index/_doc/1
{"column1": "1","column2": 2
}PUT test_index/_doc/2
{"column1": "1","column2": 2
}PUT test_index/_doc/3
{"column1": "2","column2": 1
}PUT test_index/_doc/4
{"column1": "2","column2": 1
}
我首先想到的是 collapse 搭配 cardinality,再sum,那效果如何呢
GET test_index/_search
{"collapse": {"field": "column1"},"aggs": {"distinct_column": {"cardinality": {"field": "column1"}},"distinct_sum":{"sum": {"field": "column2"}},"all_sum":{"sum": {"field": "column2"}}}
}
结果,count是去重了的,但sum没有
{"took" : 5,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 4,"relation" : "eq"},"max_score" : null,"hits" : [{"_index" : "test_index","_type" : "_doc","_id" : "1","_score" : 1.0,"_source" : {"column1" : "1","column2" : 2},"fields" : {"column1" : ["1"]}},{"_index" : "test_index","_type" : "_doc","_id" : "3","_score" : 1.0,"_source" : {"column1" : "2","column2" : 1},"fields" : {"column1" : ["2"]}}]},"aggregations" : {"distinct_sum" : {"value" : 6.0},"all_sum" : {"value" : 6.0},"distinct_column" : {"value" : 2}}
}
尝试多次未果后,找到了这个
Sum aggregation on Unique Data in ElasticSearch - Stack Overflow
那试下呗
GET test_index/_search
{"size": 0, "aggs": {"column1_count": {"terms": {"field": "column1","size": 100},"aggs": {"column2_avg": {"avg": {"field": "column2"}}}},"unique_count": {"cardinality": {"field": "column1"}},"unique_sum_column2":{"sum_bucket": {"buckets_path": "column1_count>column2_avg"}},"sum_column2":{"sum": {"field": "column2"}}}
}
非常好,达到期望,这个是先求平均值,再求和,为这思路叹服
{"took" : 5,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 4,"relation" : "eq"},"max_score" : null,"hits" : [ ]},"aggregations" : {"sum_column2" : {"value" : 6.0},"column1_count" : {"doc_count_error_upper_bound" : 0,"sum_other_doc_count" : 0,"buckets" : [{"key" : "1","doc_count" : 2,"column2_avg" : {"value" : 2.0}},{"key" : "2","doc_count" : 2,"column2_avg" : {"value" : 1.0}}]},"unique_count" : {"value" : 2},"unique_sum_column2" : {"value" : 3.0}}
}相关文章:
Elasticsearch 去重后求和
标题的要求可以用如下 SQL 表示 select sum(column2) from (select distinct(column1),column2 from table)t 要如何用 DSL 实现呢,先准备下索引和数据 PUT test_index {"mappings": {"properties": {"column1": {"type"…...
考研数学——高数:函数与极限(3)
函数的连续性与间断点 函数的连续性 左连续 右连续 区间上的连续性 在xo处连续 函数的间断点 第一类间断点(左右极限都存在) 可去间断点: f(xo-0)= f(xo+0) 跳跃间断点: f(xo-0)≠ f(xo+0) 第二类间断点(震荡间断点、无穷间断点)...
LeetCode49 字母异位词分组
LeetCode49 字母异位词分组 在这篇博客中,我们将探讨 LeetCode 上的一道经典算法问题:字母异位词分组。这个问题要求将给定的字符串数组中的字母异位词组合在一起,并以任意顺序返回结果列表。 问题描述 给定一个字符串数组 strs࿰…...
【Python】Windows本地映射远程Linux服务器上的端口(解决jupyter notebook无法启动问题)
创作日志: 学习深度学习不想在本地破电脑上再安装各种软件,我就用实验室的服务器配置环境,启动jupyter notebook时脑子又瓦特了,在自己Windows电脑上打开服务器提供的网址,那肯定打不开啊,以前在其它电脑上…...
C++面试:用户态和内核态的基本概念、区别
目录 一、基本概念 概念: 区别: 二、Windows示例 基础介绍 用户态到内核态的切换过程: 程序实例 三、Linux示例 特权级别: 用户态到内核态的切换过程: 调度和中断处理: 程序实例 总结 在操作系…...
Vue计算属性computed()
1. 计算属性定义 获取计算属性值 <div>{{ 计算属性名称}}</div>创建计算属性 let 定义的属性ref/reactive....let 计算属性名称 computed(() > {//这里写函数式,函数式里面包含定义属性//只有这个包含的定义属性被修改时才出发此函数式//通过计算属性名称co…...
JWT学习笔记
了解 JWT Token 释义及使用 | Authing 文档 JSON Web Token Introduction - jwt.io JSON Web Token (JWT,RFC 7519 (opens new window)),是为了在网络应用环境间传递声明而执行的一种基于 JSON 的开放标准((RFC 7519)。该 token 被设计为紧凑…...
WSL里的Ubuntu 登录密码忘了怎么更改
环境: Win10 专业版 WSL2 如何 Ubuntu22.04 问题描述: WSL里的Ubuntu 登录密码忘了怎么更改 解决方案: 在WSL中的Ubuntu系统中,忘记了密码,可以通过以下步骤重置密码: 1.打开命令提示符或PowerShel…...
【软件测试面试】要你介绍项目-如何说?完美面试攻略...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、测试面试时&am…...
【Crypto | CTF】RSA打法 集合
天命:我发现题题不一样,已知跟求知的需求都不一样 题目一:已知 p q E ,计算T,最后求D 已知两个质数p q 和 公钥E ,通过p和q计算出欧拉函数T,最后求私钥D 【密码学 | CTF】BUUCTF RSA-CSDN…...
在springboot中调用openai Api并实现流式响应
之前在《在springboot项目中调用openai API及我遇到的问题》这篇博客中,我实现了在springboot中调用openai接口,但是在这里的返回的信息是一次性全部返回的,如果返回的文字比较多,我们可能需要等很久。 所以需要考虑将请求接口响应…...
C++构造函数重难点解析
一、C构造函数是什么 C的构造函数是一种特殊的成员函数,用于初始化类的对象。它具有与类相同的名称,并且没有返回类型。构造函数在创建对象时自动调用,并且可以执行必要的初始化操作。 二、C构造函数特点 类的构造函数不能被继承,…...
QT day3 作业2.22
思维导图: 作业: 完善对话框,点击登录对话框,如果账号和密码匹配,则弹出信息对话框,给出提示”登录成功“,提供一个Ok按钮,用户点击Ok后,关闭登录界面,跳转到…...
AR汽车行业解决方案系列之2-远程汽修
在汽车行业中,AR技术的应用正悄然改变着整个产业链的运作方式,应用涵盖培训、汽修、汽车售后、PDI交付、质检以及汽车装配等,AR技术为多个环节都带来了前所未有的便利与效率提升。 安宝特AR将以系列推文的形式为读者逐一介绍在汽车行业中安宝…...
每日五道java面试题之spring篇(五)
目录: 第一题. 使用 Spring 有哪些方式?第二题. 什么是Spring IOC 容器?第三题. 控制反转(IoC)有什么作用?第四题. IOC的优点是什么?第五题. BeanFactory 和 ApplicationContext有什么区别? 第一题. 使用 Spring 有哪…...
挑战杯 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习
文章目录 0 前言1 课题介绍2 算法原理2.1 算法简介2.2 网络架构 3 关键代码4 数据集4.1 安装4.2 打开4.3 选择yolo标注格式4.4 打标签4.5 保存 5 训练6 实现效果6.1 pyqt实现简单GUI6.3 视频识别效果6.4 摄像头实时识别 7 最后 0 前言 🔥 优质竞赛项目系列…...
12. Springboot集成Dubbo3(三)Dubbo-Admin
目录 1、前言 2、安装 2.1、下载Dubbo-admin 2.2、修改配置 2.3、编译前端 2.4、访问 2.5、加载自己的服务 2.6、服务测试 2.7、其他 3、小结 1、前言 Dubbo Admin是用于管理Dubbo服务的基于Web的管理工具。Dubbo Admin提供了一个用户友好的界面,用于在分…...
c语言的数据结构:找环状链表入口处
一起<( ̄︶ ̄)↗[GO!] 1.如何判断一个链表是否有环 思路:设定两个快慢指针fast和slow,fast每次走两个结点,slow每次走一个节点 如果fast指针遇到了Null,那么这个链表没有环,如果fast和slow可以相遇,则代表这个链表有环 代码如下 N:fast先进环,slow后…...
LabVIEW声速测定实验数据处理
LabVIEW声速测定实验数据处理 介绍了一个基于LabVIEW的声速测定实验数据处理系统的应用。该系统利用LabVIEW的强大数据处理和分析能力,通过设计友好的用户界面和高效的算法,有效提高了声速测定实验的数据处理效率和准确性。通过这个案例,可以…...
深入剖析C语言中的段错误:从内存模型到实战调试全方位解析
引言 在C语言编程的世界里,段错误(Segmentation Fault)无疑是最常见的运行时错误之一。它源自程序对内存的非法访问,可能由于数组越界、野指针、悬垂指针、栈溢出等各种原因造成。本篇文章旨在带领读者深入探索C语言中的内存管理…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
