当前位置: 首页 > news >正文

基于Prony算法的系统参数辨识matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       Prony算法是一种用于信号处理和系统辨识的经典方法,特别适用于线性时不变系统(LTI)的频率响应分析以及模拟复指数信号序列。其基本思想是通过观测到的时间序列数据,估计出系统中包含的多个复指数函数及其对应的系数,从而揭示系统的动态特性。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

............................................................................
for ij = 1:length(SNR)for k = 1:50[ij,k]%%%参数初始化%参数初始化Fs    = 100;   %采样频率设置为400Delta = 1/Fs;dt    = 1/Fs; %加入直流分量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%原始的模拟信号%原始的模拟信号ts    = 1:0.005:length(n)-1;%测试序列X1    = 3*exp(-0.95.*ts).*cos(3*pi.*ts)+...4*exp(-0.2.*ts).*cos(45.6*pi.*ts+0.5)+...5*exp(-0.3.*ts).*cos(60*pi.*ts)+...6*exp(-0.4.*ts).*cos(80*pi.*ts+0.5)+200;%测试序列     X     = awgn(X1,SNR(ij),'measured'); %普罗尼计算 Xs = func_Prony(X,dt);err(ij,k)= mean(abs(X(1:end-1)-Xs(2:end)));end
endfigure;
plot(SNR,mean(err,2),'b-o');
grid on
xlabel('SNR');
ylabel('error');
27_006m

4.本算法原理

        假设一个LTI系统输出为一个离散时间序列y[n],它是由M个具有不同幅值、角频率和初相位的复指数函数叠加而成:

y[n] = ∑_{m=1}^{M} A_m * exp(j(ω_m*n + φ_m))

其中:

  • A_m 是第m个复指数函数的幅值。
  • ω_m 是第m个复指数函数的角频率。
  • φ_m 是第m个复指数函数的初相位。
  • j 是虚数单位。
  • n 是时间索引。

Prony算法的目标就是根据观测到的离散序列y[n],求解出Am, ωm, φm这三个参数。

Prony算法的具体步骤:

  1. 构建过采样矩阵Y: 对于长度为N的数据序列y[n],构造 Hankel 矩阵或Toeplitz矩阵 Y,矩阵元素由 y[n] 的滞后和超前项组成。

  2. 线性方程组构建与求解: 通过对上一步得到的矩阵进行适当的操作(例如特征分解或最小二乘拟合),可以建立关于幅值A_m、频率ω_m和初相位φ_m的线性方程组,并解这个方程组以获得这些参数的估计值。

  3. 参数辨识: 解决上述线性方程组后,即可得到系统中各个振荡分量的幅值、频率和初相位,进而实现对系统动态特性的精确辨识。

5.完整程序

VVV

相关文章:

基于Prony算法的系统参数辨识matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 Prony算法是一种用于信号处理和系统辨识的经典方法,特别适用于线性时不变系统(LTI)的频率响应分析以及模拟复指数信号序列。其…...

创建第一个React项目

React脚手架 npx create-react-app react-demonpx是直接从互联网网上拉最新的脚手架进行创建react 运行React项目 npm start若想找到Webpack配置文件 npm ejectReact的基本使用 基本步骤 导入react和react-dom vue 创建react元素 渲染react元素到页面中导入 import React…...

Redis篇之Redis持久化的实现

持久化即把数据保存到可以永久保存的存储设备当中(磁盘)。因为Redis是基于内存存储数据的,一旦redis实例当即数据将会全部丢失,所以需要有某些机制将内存中的数据持久化到磁盘以备发生宕机时能够进行恢复,这一过程就称…...

dpdk环境搭建和工作原理

文章目录 1、DPDK环境搭建1.1、环境搭建1.2、编译DPDK 2、DPDK工作原理 1、DPDK环境搭建 1.1、环境搭建 工具准备:VMware、ubuntu16.04。 (1)VMware添加两个网卡。桥接网卡作为 DPDK 运行的网卡,NAT 网卡作为 ssh 连接的网卡。 …...

接口测试实战--自动化测试流程

一、项目前期准备 常见项目软件架构: springMvc:tomcat里运行war包(在webapps目录下) springboot:java -jar xx.jar -xms(**) 运行参数 springCloud:k8s部署,使用kubectl create -f xx.yaml 接口自动化测试介入需越早越好,只要api定义好就可以编写自动化脚本; 某个…...

babylonjs中文文档

经过咨询官方,文档已经添加了开源协议。 基于目前babylonjs没有中文文档,为了打造更好的babylonjs生态圈 ,特和小伙伴们翻译了官方文档。 相关链接: 欢迎加群:464146715 官方文档 中文文档 Babylonjs案例分享...

WordPress使用

WordPress功能菜单 仪表盘 可以查看网站基本信息和内容。 文章 用来管理文章内容,分类以及标签。编辑文章以及设置分类标签,分类和标签可以被添加到 外观-菜单 中。 分类名称自定义;别名为网页url链接中的一部分,最好别设置为中文…...

IDEA 2021.3激活

1、打开idea,在设置中查找Settings/Preferences… -> Plugins 内手动添加第三方插件仓库地址:https://plugins.zhile.io搜索:IDE Eval Reset 插件进行安装。应用和使用,如图...

进度条小程序

文章目录 铺垫回车换行缓冲区概述强制冲刷缓冲区 简单实现倒计时功能进度条小程序版本一实例代码效果展示分析 版本二 铺垫 回车换行 回车和换行是两个独立的动作 回车是将光标移动到当前行的最开始(最左侧) 换行是竖直向下平移一行 在C语言中&…...

K8S安装部署

常见的K8S安装部署方式 Minikube Minikube是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习、预览K8S的一些特性使用。 部署地址:Install Tools | Kubernetes Kubeadm Kubeadm也是一个工具,提供kubeadm init和kube…...

AI大模型与小模型之间的“脱胎”与“反哺”(第一篇)

一、AI小模型脱胎于AI大模型,而AI小模型群又可以反哺AI大模型 AI大模型(如GPT、BERT等)通常拥有大量的参数和训练数据,能够生成或理解复杂的文本内容。这些大模型在训练完成后,可以通过剪枝、微调等方式转化为小模型&…...

C#学习总结

1、访问权限 方法默认访问修饰符:private 类默认访问修饰符:internal 类的成员默认访问修饰符:private 2、UserControl的使用 首先添加用户控件 使用时一种是通过代码添加,一种是通过拖动组件到xaml中...

计算机网络-网络互联

文章目录 网络互联网络互联方法LAN-LAN:网桥及其互连原理使用网桥实现LAN-LAN使用交换机扩展局域网使用路由器连接局域网 LAN-WANWAN-WAN路由选择算法非自适应路由选择算法自适应路由选择算法广播路由选择算法:分层路由选择算法 网络互联 网络互联是指利…...

免费的ChatGPT网站( 7个 )

ChatGPT 是由 OpenAI 公司研发的一款大型语言模型,它可以实现智能聊天、文本生成、语言翻译等多种功能。以下是 ChatGPT 的详细介绍: 智能聊天:ChatGPT 可以与用户进行自然语言对话,回答用户的问题,提供相关的信息和建…...

Opencv3.2 ubuntu20.04安装过程

##1、更新源 sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main" sudo apt update##2、安装依赖库 sudo apt-get install build-essential sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavfor…...

OpenGL ES (OpenGL) Compute Shader 计算着色器是怎么用的?

OpenGL ES (OpenGL) Compute Shader 是怎么用的? Compute Shader 是 OpenGL ES(以及 OpenGL )中的一种 Shader 程序类型,用于在GPU上执行通用计算任务。与传统的顶点着色器和片段着色器不同,Compute Shader 被设计用于在 GPU 上执行各种通用计算任务,而不是仅仅处理图形…...

Python爬虫进阶:爬取在线电视剧信息与高级检索

简介: 本文将向你展示如何使用Python创建一个能够爬取在线电视剧信息的爬虫,并介绍如何实现更高级的检索功能。我们将使用requests和BeautifulSoup库来爬取数据,并使用pandas库来处理和存储检索结果。 目录 一、爬取在线电视剧信息 …...

Floor报错原理详解+sql唯一约束性

目录 floor报错原理 唯一性约束 主键约束: 创建约束的形式 删除约束 删除唯一性约束(UNIQUE Constraint) 在SQL Server中: 在MySQL中: 在PostgreSQL中: 删除主键约束: floor报错原理 …...

Arduino中安装ESP32网络抽风无法下载 暴力解决办法 python

不知道什么仙人设计的arduino连接网络部分,死活下不下来。(真的沙口,第一次看到这么抽风的下载口) 操作 给爷惹火了我踏马解析json选zip直接全部下下来 把这个大家的开发板管理地址下下来跟后面python放在同一目录下&#xff0c…...

Linux基础命令—系统服务

基础知识 centos系统的开机流程 1)通电 2)BIOS硬件检查 3)MBR引导记录 mbr的引导程序 加载引导程序 让硬件加载操作系统内核 MBR在第一个磁盘第一个扇区 总大小512字节 mbr: 1.引导程序: 占用446字节用于引导硬件,加载引导程序 2.分区表: 总共占…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...

消息队列系统设计与实践全解析

文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...