当前位置: 首页 > news >正文

Linux进程 ----- 信号处理

前言

从信号产生到信号保存,中间经历了很多,当操作系统准备对信号进行处理时,还需要判断时机是否 “合适”,在绝大多数情况下,只有在 “合适” 的时机才能处理信号,即调用信号的执行动作。

一、信号的处理时机

1.1 处理时面临的情况

普通情况

所谓的普通情况就是指 信号没有被阻塞,直接产生,记录未决信息后,再进行处理

在这种情况下,信号是不会被立即递达的,也就无法立即处理,需要等待合适的时机。

特殊情况

当信号被 阻塞 后,信号 产生 时,记录未决信息,此时信号被阻塞了,也不会进行处理

当阻塞解除后,信号会被立即递达,此时信号会被立即处理

普通情况 就有点难搞了,它需要等待 “合适” 的时机,才能被 递达,继而被 处理

1.2 “合适”的时机

信号的产生是 异步 的

        也就是说,信号可能随时产生,当信号产生时,进程可能在处理更重要的事,此时贸然处理信号显然不够明智

比如进程正在执行一个重要的 IO,突然一个终止信号发出,IO 立即终止,对进程、磁盘都不好

因此信号在 产生 后,需要等进程将 更重要 的事忙完后(合适的时机),才进行 处理

合适的时机:进程从 内核态 返回 用户态 时,会在操作系统的指导下,对信号进行检测及处理

至于处理动作,分为:默认动作、忽略、用户自定义

搞清楚 “合适” 的时机 后,接下来需要学习 用户态 和 内核态 相关知


二、用户态与内核态

对于 用户态、内核态 的理解及引出的 进程地址空间 和 信号处理过程 相关知识是本文的重难点

2.1 概念理论

先来看看什么是 用户态和内核态

  • 用户态:执行用户所写的代码时,就属于 用户态
  • 内核态:执行操作系统的代码时,就属于 内核态

自己写的代码被执行很好理解,操作系统的代码是什么?

  • 操作系统也是由大量代码构成的
  • 在对进程进行调度、执行系统调用、异常、中断、陷阱等,都需要借助操作系统之手
  • 此时执行的就是操作系统的代码

也就是说,用户态 与 内核态 是两种不同的状态,必然存在相互转换的情况

用户态 切换为 内核态

  • 当进程时间片到了之后,进行进程切换动作
  • 调用系统调用接口,比如 open、close、read、write 等
  • 产生异常、中断、陷阱等

内核态 切换为 用户态

  • 进程切换完毕后,运行相应的进程
  • 系统调用结束后
  • 异常、中断、陷阱等处理完毕

信号的处理时机就是 内核态 切换为 用户态,也就是 当把更重要的事做完后,进程才会在操作系统的指导下,对信号进行检测、处理

下面来结合 进程地址空间 深入理解 操作系统的代码 及 状态切换 的相关内容(拓展知识)

2.2 再现 进程地址空间

首先简单回顾下 进程地址空间 的相关知识:

  • 进程地址空间 是虚拟的,依靠 页表+MMU机制 与真实的地址空间建立映射关系
  • 每个进程都有自己的 进程地址空间,不同 进程地址空间 中地址可能冲突,但实际上地址是独立的
  • 进程地址空间 可以让进程以统一的视角看待自己的代码和数据

不难发现,在 进程地址空间 中,存在 1 GB 的 内核空间,每个进程都有,而这 1 GB 的空间中存储的就是 操作系统 相关 代码 和 数据,并且这块区域采用 内核级页表 与 真实地址空间 进行映射

为什么要区分 用户态 与 内核态 ?

  • 内核空间中存储的可是操作系统的代码和数据,权限非常高,绝不允许随便一个进程对其造成影响
  • 区域的合理划分也是为了更好的进行管理

所谓的 执行操作系统的代码及系统调用,就是在使用这 1 GB 的内核空间

进程间具有独立性,比如存在用户空间中的代码和数据是不同的,难道多个进程需要存储多份操作系统的代码和数据吗?

  • 当然不用,内核空间比较特殊,所有进程最终映射的都是同一块区域,也就是说,进程只是将 操作系统代码和数据 映射入自己的 进程地址空间 而已
  • 而 内核级页表 不同于 用户级页表,专注于对 操作系统代码和数据 进行映射,是很特殊的

当我们执行诸如 open 这类的 系统调用 时,会跑到 内核空间 中调用对应的函数

而 跑到内核空间 就是 用户态 切换为 内核态 了(用户空间切换至内核空间

这个 跑到 是如何实现的呢?

在 CPU 中,存在一个 CR3 寄存器,这个 寄存器 的作用就是用来表征当前处于 用户态 还是 内核态

  • 当寄存器中的值为 3 时:表示正在执行用户的代码,也就是处于 用户态
  • 当寄存器中的值为 0 时:表示正在执行操作系统的代码,也就是处于 内核态

通过一个 寄存器,表征当前所处的 状态,修改其中的 ,就可以表示不同的 状态,这是很聪明的做法

那么进程又是如何被调度的呢?

  1. 操作系统的本质
    操作系统也是软件啊,并且是一个死循环式等待指令的软件
    存在一个硬件:操作系统时钟硬件,每隔一段时间向操作系统发送时钟中断
  2. 进程被调度,就意味着它的时间片到了,操作系统会通过时钟中断,检测到是哪一个进程的时间片到了,然后通过系统调用函数 schedule() 保存进程的上下文数据,然后选择合适的进程去运行

2.3 信号处理过程

当在 内核态 完成某种任务后,需要切回 用户态,此时就可以对信号进行 检测 并 处理 了

情况1:信号被阻塞,信号产生/未产生

信号都被阻塞了,也就不需要处理信号,此时不用管,直接切回 用户态 就行了

情况2:当前信号的执行动作为 默认

大多数信号的默认执行动作都是 终止 进程,此时只需要把对应的进程干掉,然后切回 用户态 就行了

情况3:当前信号的执行动作为 忽略

当信号执行动作为 忽略 时,不做出任何动作,直接返回 用户态

情况4:当前信号的执行动作为 用户自定义

这种情况就比较麻烦了,用户自定义的动作位于 用户态 中,也就是说,需要先切回 用户态,把动作完成了,重新坠入 内核态,最后才能带着进程的上下文相关数据,返回 用户态

在 内核态 中,也可以直接执行 自定义动作,为什么还要切回 用户态 执行自定义动作?

  • 因为在 内核态 可以访问操作系统的代码和数据,自定义动作 可能干出危害操作系统的事
  • 在 用户态 中可以减少影响,并且可以做到溯源

为什么不在执行完 自定义动作 直接后返回进程?

  • 因为 自定义动作 和 待返回的进程 属于不同的堆栈,是无法返回的
  • 并且进程的上下文数据还在内核态中,所以需要先坠入内核态,才能正确返回用户态

注意: 用户自定义的动作,需要先切换至 用户态 中执行,执行结束后,还需要坠入 内核态

三、信号的捕捉

3.1 内核实现

如果信号的执行动作为 用户自定义动作,当信号 递达 时调用 用户自定义动作,这一动作称为 信号捕捉

用户自定义动作 是位于 用户空间 中的

        当 内核态 中任务完成,准备返回 用户态 时,检测到信号 递达,并且此时为 用户自定义动作,需要先切入 用户态 ,完成 用户自定义动作 的执行;因为 用户自定义动作 和 待返回的函数 属于不同的 堆栈 空间,它们之间也不存在 调用与被调用 的关系,是两个 独立的执行流,需要先坠入 内核态 (通过 sigreturn() 坠入),再返回 用户态(通过 sys_sigreturn() 返回)

3.2 sigaction

sigaction 也可以 用户自定义动作,比 signal 功能更丰富

#include <signal.h>int sigaction(int signum, const struct sigaction *act,struct sigaction *oldact);struct sigaction 
{void     (*sa_handler)(int);	//自定义动作void     (*sa_sigaction)(int, siginfo_t *, void *);	//实时信号相关,不用管sigset_t   sa_mask;	//待屏蔽的信号集int        sa_flags;	//一些选项,一般设为 0void     (*sa_restorer)(void);	//实时信号相关,不用管
};

返回值:成功返回 0,失败返回 -1 并将错误码设置

参数1:待操作的信号

参数2:sigaction 结构体,具体成员如上所示

参数3:保存修改前进程的 sigaction 结构体信息

这个函数的主要看点是 sigaction 结构体

struct sigaction 
{void     (*sa_handler)(int);	//自定义动作void     (*sa_sigaction)(int, siginfo_t *, void *);	//实时信号相关,不用管sigset_t   sa_mask;	//待屏蔽的信号集int        sa_flags;	//一些选项,一般设为 0void     (*sa_restorer)(void);	//实时信号相关,不用管
};

其中部分字段不需要管,因为那些是与 实时信号 相关的,我们这里不讨论

sa_mask当信号在执行 用户自定义动作 时,可以将部分信号进行屏蔽,直到 用户自定义动作 执行完成

也就是说,我们可以提前设置一批 待阻塞 的 屏蔽信号集,当执行 signum 中的 用户自定义动作 时,这些 屏蔽信号集 中的 信号 将会被 屏蔽(避免干扰 用户自定义动作 的执行),直到 用户自定义动作 执行完成

四、信号部分小结

截至目前,信号 处理的所有过程已经全部学习完毕了

信号产生阶段:有四种产生方式,包括 键盘键入、系统调用、软件条件、硬件异常

信号保存阶段:内核中存在三张表,blcok 表、pending 表以及 handler 表,信号在产生之后,存储在 pending 表中

信号处理阶段:信号在 内核态 切换回 用户态 时,才会被处理

相关文章:

Linux进程 ----- 信号处理

前言 从信号产生到信号保存&#xff0c;中间经历了很多&#xff0c;当操作系统准备对信号进行处理时&#xff0c;还需要判断时机是否 “合适”&#xff0c;在绝大多数情况下&#xff0c;只有在 “合适” 的时机才能处理信号&#xff0c;即调用信号的执行动作。 一、信号的处理…...

【数位】【数论】【分类讨论】2999. 统计强大整数的数目

作者推荐 动态规划的时间复杂度优化 本文涉及知识点 数位 数论 LeetCode2999. 统计强大整数的数目 给你三个整数 start &#xff0c;finish 和 limit 。同时给你一个下标从 0 开始的字符串 s &#xff0c;表示一个 正 整数。 如果一个 正 整数 x 末尾部分是 s &#xff08…...

MongoDB聚合运算符:$atan2

$atan2用来计算反正切&#xff0c;返回指定表达式的反正切值&#xff0c;与$antan的区别主要是参数不同。 语法 { $atan2: [<expression1>, <expression1>] }<expression>为可被解析为数值的表达式$atan2返回弧度&#xff0c;使用$radiansToDegrees运算符可…...

敏捷开发最佳实践:价值维度实践案例之ABTest中台化

22年敏捷白皮书调研发现&#xff0c;仅有14%的企业部分实现价值管理闭环&#xff0c;8%的企业能够做到企业战略和业务目标与价值管理紧密结合。这一现象说明了大部分中国企业还不能在敏捷实践中实现需求价值的体系化及多维度价值度量&#xff0c;因此推广优秀的敏捷实践至关重要…...

爬虫基本库的使用(requests库的详细解析)

注&#xff1a;本文一共4万多字&#xff0c;希望读者能耐心读完&#xff01;&#xff01;&#xff01; 前面,我们了解了urllib库的基本用法&#xff08;爬虫基本库的使用(urllib库的详细解析)-CSDN博客&#xff09;。其中&#xff0c;确实又不方便的地方。例如处理网页验证…...

QT实现串口通信

一.Qt串口通信 Qt提供了两个关于串口通信的C类&#xff0c;分别是QSerialPort和QSerialPortInfo。 QSerialPort类提供了操作串口的各种接口。 QSerialPortInfo是一个辅助类&#xff0c;可以提供计算机中可用的串口的各种信息。 QSerialPortInfo Class用于提供外部串行端口的…...

微信小程序 --- 通用模块封装(showToast,showModal ,本地存储)

目录 01. 为什么进行模块封装 02. 消息提示模块封装 03. 模态对话框封装 04. 封装本地存储 API 05. 拓展:封装异步存储API优化代码 01. 为什么进行模块封装 在进行项目开发的时候&#xff0c;我们经常的会频繁的使用到一些 API&#xff0c; 例如&#xff1a;wx.showToast…...

基于springboot+vue的音乐网站(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…...

pclpy 最小二乘法拟合平面

pclpy 最小二乘法拟合平面 一、算法原理二、代码三、结果1.左边原点云、右边最小二乘法拟合平面后点云投影 四、相关数据 一、算法原理 平面方程的一般表达式为&#xff1a; A x B y C z D 0 ( C ≠ 0 ) Ax By Cz D 0 \quad (C\neq0) AxByCzD0(C0) 即&#xff1a; …...

蓝桥杯备战刷题(自用)

1.被污染的支票 #include <iostream> #include <vector> #include <map> #include <algorithm> using namespace std; int main() {int n;cin>>n;vector<int>L;map<int,int>mp;bool ok0;int num;for(int i1;i<n;i){cin>>nu…...

Python习题详解

练习&#xff1a; 1&#xff0c;计算100以内奇数的和 #计算100以内所有奇数的和 sum 0 # n 1 # while n < 100: # # sum sum n # sum n # # n n 2 # n 2 # print(sum) n 99 #求偶数时n 100 while n > 0:sum n# n n - 2n - 2 print(sum)2&#xff0c;打印直…...

绩效考核利器:Excel报表模板,解锁企业高效员工评价新境界

一、背景与目标 在现今的企业管理中&#xff0c;绩效考核是一项至关重要的任务。它旨在评估员工的工作表现&#xff0c;激励员工积极进取&#xff0c;同时也是制定薪酬、晋升、培训等决策的重要依据。为了满足这一需求&#xff0c;我们设计了一款绩效考核Excel报表模板&#x…...

如何使用Lychee+cpolar搭建本地私人图床并实现远程访问存储图片

文章目录 1.前言2. Lychee网站搭建2.1. Lychee下载和安装2.2 Lychee网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4.公网访问测试5.结语 1.前言 图床作为图片集中存放的服务网站&#xff0c;可以看做是云存储的一部分&#xff0c;既可…...

跨境支付介绍

1、跨境电商定义和分类&#xff1b; 2、国际贸易清结算&#xff1b; 3、跨境支付&#xff1b; 1、跨境电商定义和分类 跨境电商业务简单说就是指不同国家地域的主体通过电子商务进行交易的一种业务模式。同传统的电商不同&#xff0c;交易双方属于不同的国家。因此&#xff0…...

如何在Linux搭建MinIO服务并实现无公网ip远程访问内网管理界面

文章目录 前言1. Docker 部署MinIO2. 本地访问MinIO3. Linux安装Cpolar4. 配置MinIO公网地址5. 远程访问MinIO管理界面6. 固定MinIO公网地址 前言 MinIO是一个开源的对象存储服务器&#xff0c;可以在各种环境中运行&#xff0c;例如本地、Docker容器、Kubernetes集群等。它兼…...

Cortex-M可以跑Linux操作系统吗?

在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「Linux的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01; Cortex-M系列微控制器主要设计…...

日志系统项目(2)项目实现(实用工具类、日志等级类、日志消息类、日志格式化输出类)

前面的文章中我们讲述了日志系统项目的前置知识点&#xff0c;再本文中我们将开始日志项目的细节实现。 日志系统框架设计 本项目实现的是一个多日志器日志系统&#xff0c;主要实现的功能是让程序员能够轻松的将程序运行日志信息落地到指定的位置&#xff0c;且支持同步与异…...

剑指offer面试题19 二叉树的镜像

考察点 树的遍历知识点 题目 分析 我们分析算法题目的思路基本上都是归纳法&#xff0c;即通过举一些普通的例子来推理出算法流程&#xff0c;而画图又是举例子的常用手段&#xff0c;比如针对树或者链表画画图&#xff0c;针对数字类的举一些数字的例子寻找规律&#xff0c…...

SpringCloud Alibaba 2022之Nacos学习

SpringCloud Alibaba 2022使用 SpringCloud Alibaba 2022需要Spring Boot 3.0以上的版本&#xff0c;同时JDK需要是17及以上的版本。具体的可以看官网的说明。 Spring Cloud Alibaba版本说明 环境搭建 这里搭建的是一个聚合项目。项目结构如下&#xff1a; 父项目的pom.xm…...

js之数组遍历

for 可以用来遍历数组、字符串、类数组、DOM节点&#xff0c;可以更改原数组&#xff0c;可以使用break、continue 跳出循环 return 只能在函数内部使用 for(声明循环变量&#xff1b;判断循环条件&#xff1b;更新循环变量){循环体 }forEach 参数&#xff08;当前元素&#x…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...