当前位置: 首页 > news >正文

C# Onnx 使用onnxruntime部署实时视频帧插值

目录

介绍

效果

模型信息

项目

代码

下载


C# Onnx 使用onnxruntime部署实时视频帧插值

介绍

github地址:https://github.com/google-research/frame-interpolation

FILM: Frame Interpolation for Large Motion, In ECCV 2022.

The official Tensorflow 2 implementation of our high quality frame interpolation neural network. We present a unified single-network approach that doesn't use additional pre-trained networks, like optical flow or depth, and yet achieve state-of-the-art results. We use a multi-scale feature extractor that shares the same convolution weights across the scales. Our model is trainable from frame triplets alone.

FILM transforms near-duplicate photos into a slow motion footage that look like it is shot with a video camera.

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:I0
tensor:Float[1, 3, -1, -1]
name:I1
tensor:Float[1, 3, -1, -1]
---------------------------------------------------------------

Outputs
-------------------------
name:merged
tensor:Float[1, -1, -1, -1]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Numerics;
using System.Windows.Forms;

namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat result_image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> input_tensor2;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;
        float[] result_array;

        float[] input1_image;
        float[] input2_image;

        int inpWidth;
        int inpHeight;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        void Preprocess(Mat img, ref float[] input_img)
        {
            Mat rgbimg = new Mat();
            Cv2.CvtColor(img, rgbimg, ColorConversionCodes.BGR2RGB);
            int h = rgbimg.Rows;
            int w = rgbimg.Cols;
            int align = 32;
            if (h % align != 0 || w % align != 0)
            {
                int ph = ((h - 1) / align + 1) * align;
                int pw = ((w - 1) / align + 1) * align;

                Cv2.CopyMakeBorder(rgbimg, rgbimg, 0, ph - h, 0, pw - w, BorderTypes.Constant, 0);
            }

            inpHeight = rgbimg.Rows;
            inpWidth = rgbimg.Cols;

            rgbimg.ConvertTo(rgbimg, MatType.CV_32FC3, 1 / 255.0);

            int image_area = rgbimg.Rows * rgbimg.Cols;

            //input_img = new float[3 * image_area];

            input_img = Common.ExtractMat(rgbimg);

        }

        Mat Interpolate(Mat srcimg1, Mat srcimg2)
        {
            int srch = srcimg1.Rows;
            int srcw = srcimg1.Cols;

            Preprocess(srcimg1, ref input1_image);
            Preprocess(srcimg2, ref input2_image);

            // 输入Tensor
            input_tensor = new DenseTensor<float>(input1_image, new[] { 1, 3, inpHeight, inpWidth });
            input_tensor2 = new DenseTensor<float>(input2_image, new[] { 1, 3, inpHeight, inpWidth });

            //将tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("I0", input_tensor));
            input_container.Add(NamedOnnxValue.CreateFromTensor("I1", input_tensor2));

            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            int out_h = results_onnxvalue[0].AsTensor<float>().Dimensions[2];
            int out_w = results_onnxvalue[0].AsTensor<float>().Dimensions[3];

            result_array = result_tensors.ToArray();

            for (int i = 0; i < result_array.Length; i++)
            {
                result_array[i] = result_array[i] * 255;

                if (result_array[i] < 0)
                {
                    result_array[i] = 0;
                }
                else if (result_array[i] > 255)
                {
                    result_array[i] = 255;
                }

                result_array[i] = result_array[i] + 0.5f;
            }

            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];

            Array.Copy(result_array, temp_r, out_h * out_w);
            Array.Copy(result_array, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(result_array, out_h * out_w * 2, temp_b, 0, out_h * out_w);

            Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);

            result_image = new Mat();
            Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);

            result_image.ConvertTo(result_image, MatType.CV_8UC3);

            Mat mid_img = new Mat(result_image, new Rect(0, 0, srcw, srch));

            return mid_img;

        }

        private void button2_Click(object sender, EventArgs e)
        {
            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "正在运行,请稍后……";
            Application.DoEvents();

            dt1 = DateTime.Now;

            List<String> inputs_imgpath = new List<String>() { "test_img/frame07.png", "test_img/frame08.png", "test_img/frame09.png", "test_img/frame10.png", "test_img/frame11.png", "test_img/frame12.png", "test_img/frame13.png", "test_img/frame14.png" };

            int imgnum = inputs_imgpath.Count();

            for (int i = 0; i < imgnum - 1; i++)
            {
                Mat srcimg1 = Cv2.ImRead(inputs_imgpath[i]);
                Mat srcimg2 = Cv2.ImRead(inputs_imgpath[i + 1]);

                Mat mid_img = Interpolate(srcimg1, srcimg2);

                string save_imgpath = "imgs_results/mid" + i + ".jpg";
                Cv2.ImWrite(save_imgpath, mid_img);
            }

            dt2 = DateTime.Now;

            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/RIFE_HDv3.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            pictureBox1.Image = new Bitmap("test_img/frame11.png");
            pictureBox3.Image = new Bitmap("test_img/frame12.png");

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }

        private void button4_Click(object sender, EventArgs e)
        {
            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "正在运行,请稍后……";
            Application.DoEvents();

            dt1 = DateTime.Now;

            Mat srcimg1 = Cv2.ImRead("test_img/frame11.png");
            Mat srcimg2 = Cv2.ImRead("test_img/frame12.png");

            Mat mid_img = Interpolate(srcimg1, srcimg2);

            dt2 = DateTime.Now;

            pictureBox2.Image = new Bitmap(mid_img.ToMemoryStream());

            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            button2.Enabled = true;
        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Numerics;
using System.Windows.Forms;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;Tensor<float> input_tensor2;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;float[] result_array;float[] input1_image;float[] input2_image;int inpWidth;int inpHeight;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}void Preprocess(Mat img, ref float[] input_img){Mat rgbimg = new Mat();Cv2.CvtColor(img, rgbimg, ColorConversionCodes.BGR2RGB);int h = rgbimg.Rows;int w = rgbimg.Cols;int align = 32;if (h % align != 0 || w % align != 0){int ph = ((h - 1) / align + 1) * align;int pw = ((w - 1) / align + 1) * align;Cv2.CopyMakeBorder(rgbimg, rgbimg, 0, ph - h, 0, pw - w, BorderTypes.Constant, 0);}inpHeight = rgbimg.Rows;inpWidth = rgbimg.Cols;rgbimg.ConvertTo(rgbimg, MatType.CV_32FC3, 1 / 255.0);int image_area = rgbimg.Rows * rgbimg.Cols;//input_img = new float[3 * image_area];input_img = Common.ExtractMat(rgbimg);}Mat Interpolate(Mat srcimg1, Mat srcimg2){int srch = srcimg1.Rows;int srcw = srcimg1.Cols;Preprocess(srcimg1, ref input1_image);Preprocess(srcimg2, ref input2_image);// 输入Tensorinput_tensor = new DenseTensor<float>(input1_image, new[] { 1, 3, inpHeight, inpWidth });input_tensor2 = new DenseTensor<float>(input2_image, new[] { 1, 3, inpHeight, inpWidth });//将tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("I0", input_tensor));input_container.Add(NamedOnnxValue.CreateFromTensor("I1", input_tensor2));//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();int out_h = results_onnxvalue[0].AsTensor<float>().Dimensions[2];int out_w = results_onnxvalue[0].AsTensor<float>().Dimensions[3];result_array = result_tensors.ToArray();for (int i = 0; i < result_array.Length; i++){result_array[i] = result_array[i] * 255;if (result_array[i] < 0){result_array[i] = 0;}else if (result_array[i] > 255){result_array[i] = 255;}result_array[i] = result_array[i] + 0.5f;}float[] temp_r = new float[out_h * out_w];float[] temp_g = new float[out_h * out_w];float[] temp_b = new float[out_h * out_w];Array.Copy(result_array, temp_r, out_h * out_w);Array.Copy(result_array, out_h * out_w, temp_g, 0, out_h * out_w);Array.Copy(result_array, out_h * out_w * 2, temp_b, 0, out_h * out_w);Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);result_image = new Mat();Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);result_image.ConvertTo(result_image, MatType.CV_8UC3);Mat mid_img = new Mat(result_image, new Rect(0, 0, srcw, srch));return mid_img;}private void button2_Click(object sender, EventArgs e){button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "正在运行,请稍后……";Application.DoEvents();dt1 = DateTime.Now;List<String> inputs_imgpath = new List<String>() { "test_img/frame07.png", "test_img/frame08.png", "test_img/frame09.png", "test_img/frame10.png", "test_img/frame11.png", "test_img/frame12.png", "test_img/frame13.png", "test_img/frame14.png" };int imgnum = inputs_imgpath.Count();for (int i = 0; i < imgnum - 1; i++){Mat srcimg1 = Cv2.ImRead(inputs_imgpath[i]);Mat srcimg2 = Cv2.ImRead(inputs_imgpath[i + 1]);Mat mid_img = Interpolate(srcimg1, srcimg2);string save_imgpath = "imgs_results/mid" + i + ".jpg";Cv2.ImWrite(save_imgpath, mid_img);}dt2 = DateTime.Now;textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){model_path = "model/RIFE_HDv3.onnx";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();pictureBox1.Image = new Bitmap("test_img/frame11.png");pictureBox3.Image = new Bitmap("test_img/frame12.png");}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}private void button4_Click(object sender, EventArgs e){button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "正在运行,请稍后……";Application.DoEvents();dt1 = DateTime.Now;Mat srcimg1 = Cv2.ImRead("test_img/frame11.png");Mat srcimg2 = Cv2.ImRead("test_img/frame12.png");Mat mid_img = Interpolate(srcimg1, srcimg2);dt2 = DateTime.Now;pictureBox2.Image = new Bitmap(mid_img.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";button2.Enabled = true;}}
}

下载

源码下载

相关文章:

C# Onnx 使用onnxruntime部署实时视频帧插值

目录 介绍 效果 模型信息 项目 代码 下载 C# Onnx 使用onnxruntime部署实时视频帧插值 介绍 github地址&#xff1a;https://github.com/google-research/frame-interpolation FILM: Frame Interpolation for Large Motion, In ECCV 2022. The official Tensorflow 2…...

编程笔记 Golang基础 016 数据类型:数字类型

编程笔记 Golang基础 016 数据类型&#xff1a;数字类型 1. 整数类型&#xff08;Integer Types&#xff09;a) 固定长度整数&#xff1a;b) 变长整数&#xff1a; 2. 浮点数类型&#xff08;Floating-Point Types&#xff09;3. 复数类型&#xff08;Complex Number Types&…...

一周学会Django5 Python Web开发-会话管理(CookiesSession)

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计26条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…...

QT之QString.arg输出固定位数

问题描述 我需要用QString输出一个固定位数的数字字符串。起初我的代码是这样&#xff1a; int img_num 1 auto new_name QString("%1.png").arg((int)img_num, 3, 10, 0); //最后一个参数用u0也是一样的 qDebug() << "new_name:" << new…...

Linux下各种压缩包的压缩与解压

tar 归档&#xff0c;不压缩&#xff0c;常见后缀 .tar # 将文件夹归档成为一个包 tar cf rootfs.tar rootfs # 将归档包还原为文件夹 tar xf rootfs.tar # 将归档包还原到路径 a/b/c tar xf rootfs.tar -C a/b/cgzip压缩&#xff0c; 常见后缀 .tar.gz .tgz # 压缩 tar czf …...

【ctfshow—web】——信息搜集篇1(web1~20详解)

ctfshow—web题解 web1web2web3web4web5web6web7web8web9web10web11web12web13web14web15web16web17web18web19web20 web1 题目提示 开发注释未及时删除 那就找开发注释咯&#xff0c;可以用F12来查看&#xff0c;也可以CtrlU直接查看源代码呢 就拿到flag了 web2 题目提示 j…...

GEE入门篇|遥感专业术语(实践操作4):光谱分辨率(Spectral Resolution)

目录 光谱分辨率&#xff08;Spectral Resolution&#xff09; 1.MODIS 2.EO-1 光谱分辨率&#xff08;Spectral Resolution&#xff09; 光谱分辨率是指传感器进行测量的光谱带的数量和宽度。 您可以将光谱带的宽度视为每个波段的波长间隔&#xff0c;在多个波段测量辐射亮…...

c++中模板的注意事项

1. 模板定义时&#xff0c;<>中的虚拟类型参数不能为空。(因为我们使用模板就是希望使用模拟类型代替其它的类型&#xff0c;如果我们不定义就没有意义了) 2. 无论是定义函数模板还是类模板&#xff0c;其实template定义与后面使用虚拟类型的类或者函数&#xff0c;是…...

【代码随想录python笔记整理】第十三课 · 链表的基础操作 1

前言:本笔记仅仅只是对内容的整理和自行消化,并不是完整内容,如有侵权,联系立删。 一、链表 在之前的学习中,我们接触到了字符串和数组(列表)这两种结构,它们具有着以下的共同点:1、元素按照一定的顺序来排列。2、可以通过索引来访问数组中的元素和字符串中的字符。由此,…...

JAVA工程师面试专题-《Mysql》篇

目录 一、基础 1、mysql可以使用多少列创建索引&#xff1f; 2、mysql常用的存储引擎有哪些 3、MySQL 存储引擎&#xff0c;两者区别 4、mysql默认的隔离级别 5、数据库三范式 6、drop、delete 与 truncate 区别&#xff1f; 7、IN与EXISTS的区别 二、索引 1、索引及索…...

@ 代码随想录算法训练营第4周(C语言)|Day22(二叉树)

代码随想录算法训练营第4周&#xff08;C语言&#xff09;|Day22&#xff08;二叉树&#xff09; Day22、二叉树&#xff08;包含题目 ● 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点 &#xff09; 235. 二叉搜索树的最近公…...

福特锐界2021plus 汽车保养手册

福特锐界2021plus汽车保养手册两页&#xff0c;零部件保养要求&#xff0c;电子版放这里方便查询&#xff1a;...

c++进阶路线

学完C后的进阶路线-初学者勿入【程序员Rock】_哔哩哔哩_bilibili 1.系统训练代码阅读能力 代码阅读工具&#xff1a; 1&#xff09;.Source Insight(阅读大型源码) 2&#xff09;.understand(整体代码模块关系构建) 3&#xff09;.SOURCETRAIL 代码阅读能力--千行级 嵌入…...

python中的类与对象(2)

目录 一. 类的基本语法 二. 类属性的应用场景 三. 类与类之间的依赖关系 &#xff08;1&#xff09;依赖关系 &#xff08;2&#xff09;关联关系 &#xff08;3&#xff09;组合关系 四. 类的继承 一. 类的基本语法 先看一段最简单的代码&#xff1a; class Dog():d_…...

Android横竖屏切换configChanges=“screenSize|orientation“避免activity销毁重建,Kotlin

Android横竖屏切换configChanges"screenSize|orientation"避免activity销毁重建&#xff0c;Kotlin 如果不在Androidmanifest.xml设置activity的&#xff1a; android:configChanges"screenSize|orientation" 那么&#xff0c;每次横竖屏切换activity都会…...

【C语言基础】:操作符详解(二)

文章目录 操作符详解一、上期扩展二、单目操作符三、逗号表达式四、下标访问[]、 函数调用()五、结构成员访问操作符六、操作符的属性&#xff1a;优先级、结合性1. 优先级2. 结合性 操作符详解 上期回顾&#xff1a;【C语言基础】&#xff1a;操作符详解(一) 一、上期扩展 …...

模型训练基本结构

project_name/ │ ├── data/ │ ├── raw/ # 存放原始数据 │ ├── processed/ # 存放预处理后的数据 │ └── splits/ # 存放数据集划分&#xff08;训练集、验证集、测试集等&#xff09; │ ├── noteboo…...

Redis 数据结构详解:底层实现与高效使用场景

String&#xff08;字符串&#xff09; 底层实现细节&#xff1a; 动态字符串&#xff08;SDS&#xff09;: SDS相比于C语言的原生字符串&#xff0c;提供了自动内存管理和预分配机制。当字符串长度增加时&#xff0c;SDS会预先分配额外的空间&#xff0c;以减少内存重新分配…...

Vue2:router-link的replace属性

一、情景说明 我们在用浏览器访问网站的时候 知道浏览器会记录访问的历史路径&#xff0c;从而&#xff0c;可以退回到之前的页面 那么&#xff0c;Vue项目中的路由组件&#xff0c;通过router-link跳转&#xff0c;也是可以退回的 这里&#xff0c;我们用replace来屏蔽退回的…...

普中51单片机(DS18B20温度传感器)

DS18B20温度传感器原理 内部结构 64位(激)光刻只读存储器 光刻ROM中的64位序列号是出厂前被光刻好的&#xff0c;它可以看作是该DS18B20的地址序列号。64位光刻ROM的排列是&#xff1a;开始8位&#xff08;28H&#xff09;是产品类型标号&#xff0c;接着的48位是该DS18B20自身…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...