当前位置: 首页 > news >正文

Excel的中高级用法

单元格格式,根据数值的正负分配不同的颜色和↑ ↓

        根据数值正负分配颜色

        

2
-7

[蓝色]#,##0;[红色]-#,##0

        分配颜色的基础上,根据正负加↑和↓

2↑
-7↓

                 其实就是在上面颜色的代码基础上加个 向上的符号↑,或向下的符号↓

[蓝色]#,##0↑;[红色]-#,##0↓

        只保留箭头,不要颜色

2↑
-7↓

#,##0↑;#,##0↓

                保留占位符  #,##0  后面加个↑或↓ 。为什么要加这个占位符呢?这个占位符表示的就是-7和2,如果不写占位符,只写↑和↓,那么结果就不会有数字,就会变成下面这样只有↑和↓

                 

IF函数

        运算结果

        公式

=IF(SUM(AK122:AM122),SUM(AK122:AM122),"")

IF函数是Excel中的逻辑函数,它根据指定的条件进行判断,并返回相应的结果。IF函数的语法如下:

IF(condition, value_if_true, value_if_false)

其中,参数的含义如下:

  • condition:要测试的条件或表达式。
  • value_if_true:如果条件为真(即满足或不满足),则返回的值。
  • value_if_false:如果条件为假(即不满足),则返回的值。
=IF(SUM(AK122:AM122),SUM(AK122:AM122),"")

如果 condition  SUM(AK122:AM122)  只要不是0(那就是True),去取SUM(AK122:AM122)作为整个函数的输出值。

如果 condition  SUM(AK122:AM122)  的值是0(那就是False),就取""  一个空的字符串,作为整个函数的输出值。

防止没有数据的情况下,把流量统计成数字0

我想知道是什么样的操作可以让390行的Excel表只显示381行以后的数据(文件位置:远程桌面的上下线.xlsx)

Excel给一列中所有为空的行都填上“汇总”两个字我现在已经用Ctril+G选中了所有的空行,如何一次性填充所有的空行为“汇总”二字?

如果您已经使用 Ctrl + G 快捷键并通过“定位条件”选中了所有空行中的单元格,接下来可以一次性填充这些单元格为“汇总”二字。请按照以下步骤操作:

  1. 确保选中了所有空单元格
    • 如果您是通过“定位条件”选中了空值,那么所有空单元格应该已经被选中。
    • 如果有些单元格没有被选中,您可以手动点击并扩展选择范围,或者使用 Ctrl + 点击 来选中额外的单元格。
  2. 输入“汇总”二字
    • 直接在任意一个选中的空单元格中输入“汇总”。
  3. 使用 Ctrl + Enter 填充所有选中单元格
    • 在输入“汇总”后,不要直接按 Enter 键,因为这样会只在当前单元格中填充内容。
    • 相反,按下 Ctrl + Enter 组合键。这将确保“汇总”二字被填充到所有选中的单元格中。
  4. 验证填充结果
    • 检查您的数据列,确保所有之前选中的空单元格现在都填充了“汇总”二字。

如果您按照这些步骤操作后,仍然发现有些单元格没有被填充,可能是因为有些单元格的格式问题或者它们并不是真正的空单元格(例如,它们可能包含空格或其他不可见字符)。在这种情况下,您可以再次使用“定位条件”来确保只选中了真正的空单元格,并重复上述填充步骤。

请注意,在进行此类批量操作时,务必先备份您的工作表,以防意外情况发生。

我在Excel表中遇到这个问题,A1写着2022-01-01,A1向下到A15都是空的,A16写着2022-01-02,A17-A27是空的,A28写着2022-01-03, A29-A40是空的。 后面还有上千行的数据都是类似情况,其中一行是有日期的,这一行以后十几行都是空的,我希望这十几行都填充上之前那一行?除了手动Ctrl+D填充,还有其他更便捷的方式吗?

🔺1、打开Excel文件后,选中要填充的空白单元格和周围的数据。


🔺2、按快捷键【Ctrl+G】或【F5】调出定位窗口,点击【定位条件】。


🔺3、勾选【空值(K)】,点击【确定】,将所有空白单元格全部选中,第一个空值背景色是白色,表示可以编辑。


🔺4、在第一个空值中输入【=】,点击上一行的单元格即【A2】,如图所示。


🔺5、按快捷键【Ctrl+Enter】,如图所示:已全部填充。



💥注意:选中空白表格时千万不要选中整列,否则整列都会执行填充功能,有可能导致excel卡住或闪退。

我们目前有一组数据,这组数据 每个数据 的权重我都已经设定好了,请问如何用Excel计算加权方差?

要在Excel中计算加权方差,你可以使用以下步骤:

  1. 准备数据:将你的数据列在Excel工作表的一列中(例如A列),并将相应的权重列在另一列中(例如B列)。

  2. 计算加权平均数:在空白单元格中输入以下公式来计算加权平均数:

    =SUMPRODUCT(A1:An, B1:Bn) / SUM(B1:Bn)

    其中,A1:An是数据列的范围,B1:Bn是权重列的范围。SUMPRODUCT函数将每个数据值与对应的权重相乘,然后SUM函数将这些乘积的总和除以权重的总和来得到加权平均数。

  3. 计算加权方差:在另一个空白单元格中输入以下公式来计算加权方差:

    =SUMPRODUCT((A1:An - 加权平均数)^2, B1:Bn) / SUM(B1:Bn)

    这里,你需要将加权平均数替换为你在第2步中计算出的实际值。这个公式首先计算每个数据点与加权平均数的差的平方,然后将这些平方值与相应的权重相乘,最后将这些乘积的总和除以权重的总和来得到加权方差。

mstsc是英文Microsoft Terminal Services Client的缩写,中文意思是微软终端服务客户端。它是一个Windows系统内置的工具,用于远程连接到其他计算机或服务器。当你按下Win+R组合键并输入mstsc时,系统会打开远程桌面连接工具,让你能够连接到远程计算机。

手机中的DCIM是英文digital camera in memory的简写,中文意思是数字相机图像。这个文件夹通常用于存放数码相机拍摄的照片和视频,因此命名为DCIM。

常见的SQL有MySQL、Spark、Hive、Flink,请问什么情境下会使用哪一种数据库呢?

MySQL:

        读写速度快

        数据量GB到TB级别的数据用MySQL, 数据量数十TB或PB级别,一般用Hive

        备注:不是只有Spark和Hive可以在集群上运行。MySQL 可以在集群上运行,也可以单机运行

Spark:

        需要处理大规模数据集

        特别是那些不能放入内存的数据集时

        可以用于批处理、流处理、机器学习和图处理等。

        高度优化,可以在集群上运行,支持多种数据源.就是你

Hive:

        如果你们公司的数据已经存储在 Hadoop Distributed File System分布式文件系统(HDFS)中的数据。Hive 提供了一个类似 SQL 的查询语言(HQL)(Hive SQL),使得数据分析师可以更容易地查询和分析大数据。

        Hive不适用于实时分析或低延迟场景,因为它的设计目的是为了批处理和大数据处理。如果你对实时性和低延迟有要求高且数据体量较大TB到PB级别,你应该用Flink。如果你对实时性和低延迟有要求高且数据体量是GB到TB级别,你应该用MySQL。

        Hive真正的优势在于批处理。

                什么是“批处理”?

批处理就是MapReduce,先分工,再汇总

批处理是一种数据处理方式,它将大量的数据分成小批次进行处理。每个批次的数据被单独处理,处理完成后将结果进行整合,得到最终的结果。在大数据处理中,批处理通常用于处理大规模数据集,因为这种方式可以充分利用计算资源,提高数据处理效率。

举个例子,假设我们要处理一个包含数百万条记录的大型数据集,需要进行数据分析、数据清洗和汇总等操作。如果我们使用传统的数据处理方式,可能会花费很长时间才能完成整个数据集的处理。而采用批处理方式,我们可以将整个数据集分成若干个小批次,每个批次的数据单独进行处理。这样,我们可以同时处理多个批次的数据,从而大大提高了数据处理效率。

在实际应用中,批处理通常用于数据仓库、ETL(提取、转换、加载)等场景。例如,在数据仓库中,数据从源系统经过ETL过程被加载到数据仓库中,这个过程可以采用批处理方式进行数据处理,以提高效率。

总之,批处理是一种高效的数据处理方式,尤其适用于大规模数据集的处理。通过将数据分成小批次进行处理,可以充分利用计算资源,提高数据处理效率。

        Hive的性能较差,查询速度很慢,远远比MySQL、Spark、慢

        Hive的速度之所以慢,是因为下面这些原因

一部分是因为Hive是在对HDFS上的这些硬盘中的文件进行汇总,需要进行频繁的磁盘读写操作。但是Spark呢使用了一种基于内存的计算模型。Spark将数据缓存在内存中,避免了频繁的磁盘读写操作,从而提高了计算速度。因此,对于需要处理大量数据、要求高性能的场景,例如实时数据分析、机器学习、流数据处理等,Spark可能是一个更好的选择。

        实际上,Hive的性能问题更多是由于其计算模型执行引擎的设计。

        Hive使用了一种基于MapReduce的计算模型,这种模型在处理大数据时相对较慢,因为它需要在多个阶段进行数据分区、排序和聚合等操作。这些操作需要大量的计算资源和时间,导致Hive的查询速度相对较慢。

        另外,Hive的执行引擎也存在一些性能瓶颈。Hive的查询计划需要通过一个中央协调器来执行,这会导致查询执行过程中的瓶颈和延迟。相比之下,一些其他的大数据处理工具(如Spark和Flink)采用了更为高效的计算模型和执行引擎,可以更快地处理数据。

Spark和Flink的执行引擎的优越性体现在下面几点

        Spark的执行引擎称为Spark Engine,它采用了基于RDD的计算模型,可以进行弹性分布式计算。Spark Engine可以将多个操作转化为DAG图,按照最优的执行方式进行计算,从而减少了数据的读写、Shuffle等操作,提高了处理效率

        Flink最大的特点是批流一体。在Flink中,所有的数据都被视为流进行处理,无论是批数据还是流数据,都可以在同一个Flink集群中进行处理。Flink的执行引擎称为Flink Engine,它是一个流处理和批处理的统一计算框架。Flink Engine支持有界和无界数据的流处理,可以对数据流进行实时处理和状态管理。与Spark相比,Flink在处理流数据时具有更好的实时性和低延迟性

        从实时性上来说,Flink要优于Spark。

Flink:

        需要实时数据处理和分析的应用。Flink 提供流处理stream和批处理batch,对于低延迟的场景非常适合。对实时性要求很高。

        常用到Flink的行业和公司有下面这些。

        推荐系统:电商领域的实时数据分析和推荐系统也是 Flink 的应用场景。例如,根据用户的实时行为和偏好,进行商品推荐。——实时处理和分析社交媒体数据和广告数据,进行用户分析和精准营销。

        物联网(IoT)领域:物联网设备产生大量的实时数据,Flink 可以用于实时分析这些数据,进行设备监控、预警和智能调控等。

        视频、游戏:

  1. 实时数据处理和分析:视频和游戏行业通常需要实时处理和分析大量的数据,例如用户行为、播放量、在线人数等。Flink提供了高吞吐、低延迟的流处理能力,可以满足这些实时数据处理和分析的需求。
  2. 实时反馈和推荐:在视频和游戏中,用户需要实时的反馈和推荐。Flink可以实时处理数据并给出反馈,例如推荐相关内容、提供挑战排名等,从而提高用户体验和留存率。
  3. 异常检测和实时监控:视频和游戏行业需要实时监控系统状态,及时发现异常情况并处理。Flink可以实时检测数据流中的异常,及时发出警报和处理,保证系统的稳定性和可用性。
  4. 流式广告投放:在视频和游戏中,广告投放是一个重要的收入来源。Flink的实时数据处理能力可以帮助实现流式广告投放,根据用户行为和偏好进行精准投放,提高广告效果和收益。

        金融行业:金融市场数据是实时变化的,Flink 可以用于实时风险管理和欺诈检测。例如,实时监测交易行为和风险指标,进行实时风险管理和欺诈检测

        物流行业:实时路况监测和配送优化是物流领域的重要需求,Flink 可以实时处理和分析路况数据,优化配送路线和提高配送效率。

相关文章:

Excel的中高级用法

单元格格式,根据数值的正负分配不同的颜色和↑ ↓ 根据数值正负分配颜色 2-7 [蓝色]#,##0;[红色]-#,##0 分配颜色的基础上,根据正负加↑和↓ 2↑-7↓ 其实就是在上面颜色的代码基础上加个 向上的符号↑,或向下的符号↓ [蓝色]#,##0↑;[红色…...

【ArcGIS】基本概念-空间参考与变换

ArcGIS基本概念-空间参考与变换 1 空间参考与地图投影1.1 空间参考1.2 大地坐标系(地理坐标系)1.3 投影坐标系总结 2 投影变换预处理2.1 定义投影2.2 转换自定义地理(坐标)变换2.3 转换坐标记法 3 投影变换3.1 矢量数据的投影变换…...

Qt QWidget 简约美观的加载动画 第五季 - 小方块风格

给大家分享两个小方块风格的加载动画 &#x1f60a; 第五季来啦 &#x1f60a; 效果如下: 一个三个文件,可以直接编译运行 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QGridLayout> int main(int argc, char *arg…...

针对KZG承诺和高效laconic OT的extractable witness encryption

1. 引言 2024年以太坊基金会等成员论文 Extractable Witness Encryption for KZG Commitments and Efficient Laconic OT&#xff0c;开源代码实现见&#xff1a; https://github.com/rot256/research-we-kzg&#xff08;Rust&#xff09; 在该论文中&#xff0c;提供了一种…...

Spring Boot中实现列表数据导出为Excel文件

点击下载《Spring Boot中实现列表数据导出为Excel文件》 1. 前言 本文将详细介绍在Spring Boot框架中如何将列表数据导出为Excel文件。我们将通过Apache POI库来实现这一功能&#xff0c;并解释其背后的原理、提供完整的流程和步骤&#xff0c;以及带有详细注释的代码示例。最…...

华为ipv6 over ipv4 GRE隧道配置

思路&#xff1a; PC1访问PC2时&#xff0c;会先构造源ipv6为2001:1::2&#xff0c;目的IPV6为2001:2::2的ipv6报文&#xff0c;然后查看PC1的路由表&#xff0c;发送到R1&#xff0c;r1接收后&#xff0c;以目的IPV6地址2001:2::2查询IPV6路由表&#xff0c;出接口为tun0/0/0…...

项目解决方案:海外门店视频汇聚方案(全球性的连锁店、国外连锁店视频接入和汇聚方案)

目 录 一、概述 二、建设目标及需求 2.1 建设目标 2.2 需求描述 2.3 需求分析 三、建设方案设计 3.1 系统方案拓扑图 3.2 方案描述 3.3 服务器配置推荐 四、产品功能 4.1 资源管理平台 &#xff08;1&#xff09;用户权限管理 &#xff08;2&#xff09…...

Java中的数据类型详解

引言 在Java编程中&#xff0c;数据类型是非常重要的概念&#xff0c;它定义了数据的类型和范围&#xff0c;帮助程序员有效地操作数据。Java的数据类型可以分为两大类&#xff1a;基本数据类型和引用数据类型。本文将详细介绍Java中的各种数据类型&#xff0c;并附上相应的代…...

ABBYY FineReader16文档转换、PDF管理与文档比较功能介绍

ABBYY FineReader 16作为一款OCR和PDF一体化程序&#xff0c;其强大的功能使得文档处理变得简单高效。在众多功能中&#xff0c;文档转换、PDF管理和文档比较这三大功能尤为突出&#xff0c;成为了众多企业和个人用户的首选工具。 ABBYY Finereader 16-安装包下载如下&#xff…...

导览系统厂家|景区电子导览|手绘地图|AR导览|语音导览系统

随着元宇宙、VR、AR等新技术的快速发展&#xff0c;旅游服务也更加多元化、智能化。景区导览系统作为旅游服务的重要组成部分&#xff0c;其形式更加多元化智能化。智能导览系统作为一种新的服务方式&#xff0c;能够为游客提供更加便捷的旅游服务和游览体验&#xff0c;也逐渐…...

oracle 如何使用脚本实现访问控制(无需额外插件)

随着这些年勒索病毒的爆发,各个企业对数据安全的要求越来越高,常见的办法有开启数据库审计,加数据库防火墙,网络限制等等;但是细粒度审计会消耗大量系统资源,第三方数据库防火墙一般是需要收费的;这里介绍我个人常用的四个db级别trigger,用于记录部分关键信息可以应对部…...

【C语言】指针初阶

正文开始之前&#xff0c;我们要记住一个东西就是&#xff1a;地址指针 目录 一、指针的解释二、指针变量和地址1、取地址操作符2、指针变量和解引用操作1、指针变量2、拆解指针类型3、解引用操作符4、注意事项 3、指针变量的大小4、指针的解引用5、void*指针 三、指针的运算1、…...

07_html

文章目录 引言前端概述分类 HTML快速入门重要的body标签注释hr标签br标签一些常见的标签标题标签div标签span标签p标签a标签img标签路径问题 ol和ul标签table标签input标签&#xff08;表单元素&#xff09;textarea标签&#xff08;表单元素&#xff09;select标签&#xff08…...

全量知识系统问题及SmartChat给出的答复 之1

Q1. 一套完整的全量知识系统应该有哪些组成部分&#xff1f; 一套完整的全量知识系统应该包括以下组成部分&#xff1a; 数据采集&#xff1a;收集、整理、清洗和存储各种数据&#xff0c;包括结构化数据、半结构化数据和非结构化数据等。 数据存储和管理&#xff1a;建立可靠…...

【appium】App类型、页面元素|UiAutomator与appium|App元素定位

目录 一、App前端基础知识 1、App类型划分 2、App类型对比 3、App页面元素 App页面元素分为布局和控件两种 常见布局&#xff1a; 常见控件&#xff1a;定位软件&#xff1a;appium和sdk自带的uiautomatorviewer都可以定位 二、App元素定位 1、id定位 2、text定位 3…...

ChatGpt大模型入门

环境配置 创建虚拟环境 建议创建一个新的虚拟环境&#xff0c;避免安装依赖冲突&#xff0c; conda下载&#xff1a; https://docs.conda.io/en/latest/miniconda.html conda安装&#xff1a; https://zhuanlan.zhihu.com/p/591091259 或者使用venv 使用参考&#xff1a;http…...

Mac 配置Clion Qt 调试显示变量值

背景 使用Clion开发Qt程序&#xff0c;在进行调试时&#xff0c;会看不到Qt类的变量值&#xff0c;只有指针形式&#xff0c;对于调试很不方便。 环境&#xff1a; Macbook ProCPU&#xff1a;M3Qt 5.15.13CLion 2023.3.4 解决方案 为了让Clion能显示Qt类的值&#xff0c;…...

【Ansys Fluent Web 】全新用户界面支持访问大规模多GPU CFD仿真

基于Web的技术将释放云计算的强大功能&#xff0c;加速CFD仿真&#xff0c;从而减少对硬件资源的依赖。 主要亮点 ✔ 使用Ansys Fluent Web用户界面™&#xff08;UI&#xff09;&#xff0c;用户可通过任何设备与云端运行的仿真进行远程交互 ✔ 该界面通过利用多GPU和云计算功…...

13.云原生之常用研发中间件部署

云原生专栏大纲 文章目录 mysql主从集群部署mysql高可用集群高可用互为主从架构互为主从架构如何实现主主复制中若是两台master上同时出现写操作可能会出现的问题该架构是否存在问题&#xff1f; heml部署mysql高可用集群 nacos集群部署官网文档部署nacoshelm部署nacos redis集…...

远离远程代码执行 ,RPC 运行时中的三个漏洞是如何被发现的?

引言 MS-RPC 是 Windows 网络中广泛使用的协议&#xff0c;许多服务和应用程序都依赖它。 因此&#xff0c;MS-RPC 中的漏洞可能会导致严重后果。 Akamai 安全情报小组在过去一年中一直致力于 MS-RPC 研究。 我们发现并利用了漏洞&#xff0c;构建了研究工具&#xff0c;并编写…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...