yolov9,使用自定义的数据训练推理
[源码 🐋]( GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information)
[论文 📘](arxiv.org/pdf/2402.13616.pdf)
论文摘要:本文介绍了一种新的目标检测算法YOLOv9,该算法利用可编程梯度信息来学习用户想要学习的内容。通过在网络的反向传播过程中引入可编程梯度信息,我们可以指导网络学习特定的目标,从而提高检测的准确性和效率。
1. 源码下载
- git clone GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
- cd yolov9
2. 配置
依赖库:torch
3. Data
YOLO format.
# class_id center_x center_y bbox_width bbox_height
Organize your directory of custom dataset as follows:
custom_dataset:/data/custom_data
├── images
│ ├── train
│ │ ├── train0.jpg
│ │ └── train1.jpg
│ └── test
│ ├── test0.jpg
│ └── test1.jpg
└── labels
├── train
│ ├── train0.txt
│ └── train1.txt
└── test
├── test0.txt
└── test1.txt
然后生成图像索引的txt文件
- Train
-
# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 - # train gelan models
-
python train_dual.py --data data/coco_wj.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --close-mosaic 15 - # train yolov9 models
-
- Evaluation
-
# evaluate converted yolov9 models python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val# evaluate yolov9 models #python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val# evaluate gelan models # python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val
-
- Inference
- Python detect.py
- 下载权重yolov9-c.pt,并放在yolov9下,然后在代码中指定权重和图片
- 错误:nms:官方解释The first prediction is from aux branch, so choose second prediction.
-
# prediction = prediction[0] # select only inference outputprediction = prediction[0][1] # zqj20240226 prediction[0][0]两个结果不同
- Python detect.py
- Deploy
- 转onnx
- 使用第三方的转换+NMSPlugin
- 使用自带的export.py,可以生成onnx,但是转engine报错“/weight.28 ****”
- 转onnx
[博客 📰](https://github.com/thaitc-hust/yolov9-tensorrt/blob/main/torch2onnx.py)
Torch2onnx.py
add_nms_plugins.py # add BatchedNMSDynamic_TRT
也可以将这两个文件拷贝到yolov9下,生成onnx和onnx-nms
2. 转engine:trtexec
- 测试结果

- 耗时统计-640-batch4-rtx3060
显存1877MB cpu负载86% 内存12.1% 耗时57ms
未完待续
相关文章:
yolov9,使用自定义的数据训练推理
[源码 🐋]( GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information) [论文 📘](arxiv.org/pdf/2402.13616.pdf) 论文摘要:本文介绍了一种新的目标检测…...
企业文件图纸加密有哪些?图纸文件加密防泄密软件如何选?
在现在的市场发展中,对于企业的图纸文件安全问题越来越重视,如设计图纸,重要文件等,一旦泄漏就会给企业造成巨大的经济损失。所以对企业管理者来讲,如何才能选择一款好用的适合本企业的图纸文件加密软件是非常重要的&a…...
phpldapadmin This base cannot be created with PLA
phpldapadmin This base cannot be created with PLA 1、问题描述2、问题分析3、解决方法:创建根节点 1、问题描述 安装phpldapadmin参考链接: https://blog.csdn.net/OceanWaves1993/article/details/136048686?spm1001.2014.3001.5501 刚安装完成phpldapadmin&…...
如何开发自己的npm包并上传到npm官网可以下载
目录 搭建文件结构 开始编写 发布到npm 如何下载我们发布的npm包 搭建文件结构 先创建新文件夹,按照下面的样子布局 .├── README.md //说明文档 ├── index.js //主入口 ├── lib //功能文件 └── tests //测试用例 然后再此根目录下初始化package包 npm init…...
Linux Shell脚本练习(一)
一、 Linux下执行Shell脚本的方式: 1、用shell程序执行脚本: a、根据你的shell脚本的类型,选择shell程序,常用的有sh,bash,tcsh等 b、程序的第一行#!/bin/bash里面指明了shell类型的,比如#!/…...
面试数据库篇(mysql)- 11主从同步
原理 MySQL主从复制的核心就是二进制日志 二进制日志(BINLOG)记录了所有的 DDL(数据定义语言)语句和 DML(数据操纵语言)语句,但不包括数据查询(SELECT、SHOW)语句。 复…...
Python中的os库
一.OS库简介 OS是Operating System的简写,即操作系统。 OS库是一个操作系统接口模块,提供一些方便使用操作系统相关功能的函数。 二.OS库常用函数 2.1文件和目录 2.1.1:os.getcwd() 作用:返回当前工作目录,结果是…...
C++ | 使用正则表达式匹配特定形式的字符串
C | 使用正则表达式匹配特定形式的字符串 在 C 中,可以使用 <regex> 头文件提供的正则表达式库来对特定形式的字符串进行匹配操作。 常用的正则表达式模式语法 普通字符: 普通字符会按照其字面意义进行匹配,例如 a 会匹配字符 a。 转…...
计算机组成原理-第一/二章 概述和数据的表示和运算【期末复习|考研复习】
文章目录 前言第一章 计算机组成原理 概述及各种码1.1 计算机硬件的基本组成1.1.1 存储器1.1.2 运算器1.1.3 控制器 1.2 计算机的工作过程1.3 计算机的性能指标1.4 各个字长区别与联系 第二章 数据的表示与运算2.1 ASCII码2.2 各种码2.3 浮点数 总结 前言 给大家整理了一下计算…...
基于transform的scale属性,动态缩放整个页面,实现数据可视化大屏自适应,保持比例不变形,满足不同分辨率的需求
文章目录 一、需求背景:二、需求分析:三、选择方案:四、实现代码:五、效果预览:六、封装组件: 一、需求背景: 数据可视化大屏是一种将数据、信息和可视化效果集中展示在一块或多块大屏幕上的技…...
Linux第67步_linux字符设备驱动_注册和注销
1、字符设备注册与注销的函数原型” /*字符设备注册的函数原型*/ static inline int register_chrdev(unsigned int major,\ const char *name, \ const struct file_operations *fops) /* major:主设备号,Limnux下每个设备都有一个设备号,设备号分…...
设计模式:软件工程的艺术
引言 设计模式是软件工程中一种解决常见问题的经验总结,是一套可复用的设计思想。它们提供了在特定情境下的解决方案,有助于构建可维护、灵活、可复用、可扩展的软件系统。设计模式是对软件设计中通用问题的抽象,提供了一种共享的语言和思维…...
试题 算法训练 数的潜能
资源限制 内存限制:256.0MB C/C时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s 问题描述 将一个数N分为多个正整数之和,即Na1a2a3…ak,定义Ma1*a2*a3*…*ak为N的潜能。 给定N,…...
OpenAI Triton 入门教程
文章目录 Triton 简介背景Triton 与 CUDA 的关系 Triton 开发样例样例一:Triton vector addition 算子Triton kernel 实现kernel 函数封装函数调用性能测试 样例二:融合 Softmax 算子动机Triton kernel 实现kernel 封装单元测试性能测试 样例三ÿ…...
【flask+python】利用魔术方法,更优雅的封装model类
定义model # Time :2024-2024/2/27-14:49 # Email :514422868qq.com # Author :Justin # file :user.py # Software :01-fishbook from app.model.base import Base from sqlalchemy import Column, Integer, SmallInteger, String from werkzeug.security …...
Qt程序设计-报警灯自定义控件实例
本文讲解Qt报警灯自定义控件实例。 实现功能 设置边框和内部颜色。 设置是否闪烁点亮。 添加的报警灯类 #ifndef LIGHT_H #define LIGHT_H#include <QWidget> #include <QDebug> #include <QPainter> #include <QTimer>class Light : public QWid…...
Linux之定时任务02
一、什么是crond Linux 中 crond 就是定时任务,即根据 crond 指定的时间,由系统按指定的时间,周期性,自动触发的事件。 crond 服务在默认的情况下会每分钟检查系统中是否有定时任务,如果有且符合触发条件,…...
PHP堆栈+errLog定位
调用堆栈(Call Stack)是一个记录了程序在运行时所有活动子例程的栈结构。它以函数调用的方式描述了程序的执行流程和调用关系。 在PHP中,我们可以通过打印PHP调用堆栈来辅助调试和定位代码中的问题。本文将介绍如何在PHP中打印调用堆栈&…...
【大数据】Flink SQL 语法篇(七):Lookup Join、Array Expansion、Table Function
《Flink SQL 语法篇》系列,共包含以下 10 篇文章: Flink SQL 语法篇(一):CREATEFlink SQL 语法篇(二):WITH、SELECT & WHERE、SELECT DISTINCTFlink SQL 语法篇(三&…...
【云原生】Spring Cloud Gateway的底层原理与实践方法探究
🎉🎉欢迎光临🎉🎉 🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀 🌟特别推荐给大家我的最新专栏《Spring 狂野之旅:从入门到入魔》 🚀 本…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
