当前位置: 首页 > news >正文

打造智能汽车微服务系统平台:架构的设计与实现

随着智能汽车技术的飞速发展,微服务架构在汽车行业中的应用越来越广泛。采用微服务架构可以使汽车系统更加灵活、可扩展,并且有利于快速推出新功能和服务。本文将从设计原则、关键技术、数据安全等方面,介绍如何搭建智能汽车微服务系统平台架构。b6229c7980454b489ce5b19642a5218b.png

### 汽车微服务系统平台架构设计原则
1. 模块化设计:将汽车系统拆分为多个小型的服务单元,每个服务负责特定的功能,便于管理和维护。4790540d14244282a388f98cd7781dce.png
2. 弹性扩展:每个微服务应具备独立部署和扩展的能力,根据需要动态伸缩,提高系统的弹性和稳定性。
3. 数据自治:每个微服务都有自己的数据存储,避免数据耦合和数据泄露风险。
4. 前后端分离:前端与后端分离,通过API接口进行通信,实现前后端的独立开发和部署。d433d20ace2546dcb9bcd7083f7ab376.png

### 关键技术和组件
1. 微服务框架:选择适合汽车系统的微服务框架,如Spring Cloud、Docker等,实现微服务的注册、发现、调用和监控。6a401131195846da960096690a6fa61c.png
2. API网关:负责请求路由、认证、限流等功能,统一对外暴露API接口,保护系统安全。
3. 分布式数据库:支持数据分片、数据复制、数据同步等功能,确保数据的一致性和可靠性。
4. 消息队列:实现微服务之间的异步通信,解耦微服务之间的依赖关系,提高系统的响应速度和可靠性。a80c452849034b38b15b78374dfc159d.png

### 数据安全保障
1. 数据加密传输:使用SSL/TLS协议对数据传输进行加密保护,防止数据被窃取或篡改。
2. 访问控制与身份认证:建立严格的访问控制机制,对微服务的访问权限进行管控。
3. 安全漏洞检测与修复:定期进行系统安全漏洞扫描和修复,保障系统的安全性和稳定性。26675ed6c175494f8f741b2eb5b9673a.png

### 构建智能汽车微服务系统平台的实施步骤e51216b0110f49a1b0635f7220fe8a83.png
1. 制定平台架构设计方案,明确架构目标和原则。
2. 设计微服务拆分方案,确定各个微服务的功能和边界。
3. 部署微服务框架和API网关,实现微服务之间的通信和数据交互。faad64012a08475480910474f5fe4d5b.png
4. 引入分布式数据库和消息队列,支持微服务的数据共享和通信。72bebe92156443a3af221d32186f68fd.png
5. 加强数据安全保障措施,保护微服务系统的数据和用户隐私。dfcbb6455bfc4f2894ed7493b8410846.png
6. 进行系统集成测试和性能优化,确保系统的稳定性和可靠性。b6b3bec1f802404c80c4aaae68386dd1.png

通过以上步骤和关键技术的应用,可以构建一个灵活、高效且安全的智能汽车微服务系统平台架构,为智能汽车行业的发展和应用提供有力支持,推动汽车行业迈向数字化和智能化的未来。5bb32f0d0c174d17bbf96fe30a3e3174.png

 

相关文章:

打造智能汽车微服务系统平台:架构的设计与实现

随着智能汽车技术的飞速发展,微服务架构在汽车行业中的应用越来越广泛。采用微服务架构可以使汽车系统更加灵活、可扩展,并且有利于快速推出新功能和服务。本文将从设计原则、关键技术、数据安全等方面,介绍如何搭建智能汽车微服务系统平台架…...

机试指南:Ch5:线性数据结构 Ch6:递归与分治

文章目录 第5章 线性数据结构1.向量 vector2.队列 queue(1)队列的特点、应用(2)基本操作(3)例题例题1:约瑟夫问题2 (难度:中等) (4)习题习题1:排队打饭 (难度:中等) 3.栈 stack(1)栈…...

展厅设计的理念是什么

1、立足当地文化 升华本地精神 ,因地制宜,深入挖掘本土文化特色,撷取其精华,灵活运用、巧妙融入,做到掌控宏观全局。 重点突出,努力打造本土拳头品牌,挖掘其内涵,拓展延伸、着重展示…...

springboot 定时任务备份mysql数据库

记录在Linux 系统上定时备份MySQL数据库 1、在代码中添加备份 package org.jeecg.modules.xczxhhr.job;import lombok.extern.slf4j.Slf4j; import org.quartz.Job; import org.quartz.JobExecutionContext;import java.io.BufferedReader; import java.io.File; import java…...

PMP考试之20240301

1、在回顾项目团队最新的绩效报告时,项目经理注意到他们的产出出现了重大下降。项目经理决定: A.增加每个团队成员在截止日期前完成任务的压力 B.增加状态报告和团队评审会议的频率 C.为表现最好的团队成员提供特别奖励 D.改善和促进团队成员之间的信任和凝聚力…...

什么是MAC地址? win10电脑查看MAC地址的多种方法

您是否知道连接到家庭网络的每件硬件都有自己的身份?正如每个设备都分配有自己的 IP 地址一样,每个硬件都有一个唯一的网络标识符。 该标识符称为MAC 地址。MAC 代表媒体访问控制。您可能需要 MAC 地址来解决网络问题或配置新设备。在 Windows 中查找您…...

vue3中的基本语法

目录 基础素材 vue3的优化 使用CompositionAPI理由 1. reactive() 函数 2. ref() 函数 2.1. ref的使用 2.2. 在 reactive 对象中访问 ref 创建的响应式数据 3. isRef() 函数 4. toRefs() 函数 5. computed() 5.1. 通过 set()、get()方法创建一个可读可写的计算属性 …...

Timeplus-proton流处理器调研

概念 Timeplus是一个流处理器。它提供强大的端到端功能,利用开源流引擎Proton来帮助数据团队快速直观地处理流数据和历史数据,可供各种规模和行业的组织使用。它使数据工程师和平台工程师能够使用 SQL 释放流数据价值。 Timeplus 控制台可以轻松连接到不…...

H3C防火墙安全授权导入

一、防火墙授权概述 前面我们已经了解了一些防火墙的基本概念,有讲过防火墙除了一些基本功能,还有一些高级安全防护,但是这些功能需要另外独立授权,不影响基本使用。这里以H3C防火墙为例进行大概了解下。 正常情况下,防…...

使用 OpenCV 通过 SIFT 算法进行对象跟踪

本文介绍如何使用 SIFT 算法跟踪对象 在当今世界,当涉及到对象检测和跟踪时,深度学习模型是最常用的,但有时传统的计算机视觉技术也可能有效。在本文中,我将尝试使用 SIFT 算法创建一个对象跟踪器。 为什么人们会选择使用传统的计…...

SHELL 脚本: 导出NEO4j DUMP并上传SFTP

前提 开通sftp账号 安装expect 示例 NEO4J_HOME/path/to/neo4j # neo4j 安装目录 DUMP_PATH/data/dump # DUMP本地保存目录 DUMP_FILEneo4j_$(date %F).dump #导出文件名称 UPLOAD_DIR/path/to/stfp/dump/ #上传目录 $NEO4J_HOME/bin/neo4j-admin dump --databaseneo4j --t…...

Vue 封装一个函数,小球原始高度不固定,弹起比例不固定、计算谈几次后,高度低于1米

## 简介 本文将介绍如何使用Vue封装一个函数&#xff0c;计算小球弹跳的次数&#xff0c;直到高度低于1米。函数的参数包括小球的原始高度和弹起比例。通过代码案例演示了如何使用Vue进行封装和调用。 ## 函数封装 vue <template> <div> <label for&qu…...

外地人能申请天津公租房吗?2024天津积分落户租房积分怎么加?

相关推荐&#xff1a;在天津工作的外地人可以申请天津公共租赁住房吗&#xff1f; 外地人可以申请天津公共租赁住房吗&#xff1f; 2024年定居天津租房如何加分&#xff1f; 根据《天津居住证积分指标及积分表》的规定&#xff0c;在天津租房也可以参加积分结算&#xff0c;每…...

毕业设计——基于springboot的聊天系统设计与实现(服务端 + 客户端 + web端)

整个工程包含三个部分&#xff1a; 1、聊天服务器 聊天服务器的职责一句话解释&#xff1a;负责接收所有用户发送的消息&#xff0c;并将消息转发给目标用户。 聊天服务器没有任何界面&#xff0c;但是却是IM中最重要的角色&#xff0c;为表达敬意&#xff0c;必须要给它放个…...

公告栏功能:自动弹出提醒,重要通知不再错过

发布查询时&#xff0c;您是否遇到这样的困扰&#xff1a; 1、查询发布时间未到&#xff0c;学生进入查询主页后发现未发布任何查询&#xff0c;不断进行咨询。 2、有些重要事项需要进入查询主页就进行强提醒&#xff0c;确保人人可见&#xff0c;用户需要反馈“我知道了”才能…...

网络编程学习

思维导图 代码练习 TCP实现通信 服务器端代码 #include <myhead.h> #define SER_IP "192.168.152.135" #define SER_PORT 8910 int main(int argc, const char *argv[]) {//&#xff11;创建用于监听的套接字int sfd -1;sfd socket(AF_INET,SOCK_STREAM,0)…...

centos物理电脑安装过程(2024年1月)

开机时&#xff1a;CtrlAltDelete键重启电脑 重启开始时&#xff1a;按F11&#xff0c;桌面弹出蓝色框&#xff0c;选择第二个SSK SFD142 1.00&#xff0c;回车 选择install centos7安装 选择后弹出选择安装选项&#xff0c;选择语言 连接无线网络 安装设置&#xff0c;选择磁…...

Web自动化测试平台开发---Automated_platform

一、项目简介 历时一个假期&#xff0c;Automated_platform 第一版完工&#xff0c;是一款基于po模式的自动化测试平台,采用后端技术为DjangoceleryRabbitMQmysql 配置mysql数据库&#xff0c;进行数据迁移后&#xff0c;运行项目后&#xff0c;即可成功访问http://127.0.0.1:8…...

mybatis-plus: 多租户隔离机制

文章目录 一、TenantLineHandler1、介绍2、包含的方法 二、简单实例三、实践1、实现TenantLineHandler接口 一、TenantLineHandler 1、介绍 TenantLineHandler 是 Mybatis-Plus 中用于处理多租户的接口&#xff0c;用于实现多租户数据隔离的具体逻辑。通过实现这个接口&#…...

用Socks5代理游戏,绕过“网络海关”去探险

1. 出海大冒险的开始 在游戏世界&#xff0c;就像在现实生活中一样&#xff0c;有时我们需要越过海洋去探索未知的世界。但是&#xff0c;网络上也有一些“海关”&#xff0c;限制我们访问某些网站或游戏服务器。这就是我们今天要克服的挑战&#xff01; 2. Socks5代理&#xf…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...