13_pinctrl子系统
总结
pinctrl作为驱动
iomuxc节点在设备树里面 存储全部所需的引脚配置信息
iomux节点匹配pinctrl子系统
控制硬件外设的时候 要知道有哪些gpio 再看gpio有哪些服用寄存器
接着在程序配置gpio相关寄存器 这样搞效率很低
所以用iomux节点保存所有的引脚组 pinctrl驱动起来的时候获得所有引脚信息 保存在内存
pinctrl子系统预先确定引脚的数量和名字
- 为每个引脚的配置信息分配内存
- pinctrl子系统统一管理每个引脚的使用状态
-iomux节点存放了各种引脚属性,pinctrl驱动解析iomux节点,存放引脚信息进入内存
iomux节点里如何填写
//iomuxc节点
//imx6ull.dtsi
iomuxc: iomuxc@20e0000 {compatible = "fsl,imx6ul-iomuxc";reg = <0x20e0000 0x4000>;};
//继续扩展 引用iomux节点 **imx6ull-seeed-npi.dts**
&iomuxc {pinctrl-names = "default","init","sleep"; //选定引脚状态pinctrl-0 = <&pinctrl_uart1>; //一个状态就是一组引脚,比如对应下面pinctrl-1 =<&xxx>;pinctrl-2 =<&yyy>;
...pinctrl_uart1: uart1grp {fsl,pins = <MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX 0x1b0b1MX6UL_PAD_UART1_RX_DATA__UART1_DCE_RX 0x1b0b1>;};...
}
上面 引脚里面的宏是什么意思
MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX
#define MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX 0x0084 0x0310 0x0000 0 0
< mux_reg conf_reg input_reg mux_mode input_val >0x0084 0x0310 0x0000 0x0 0x0
mux_reg:引脚复用设置寄存器 基地址+mux_reg 就是 PIN 的复用寄存器地址。
conf_reg : 设置这个引脚的电气属性的寄存器地址 基地址+conf_reg =设置pin的电气属性地址
input_reg:引脚输入设置寄存器 有些外设有 input_reg 寄存器
引脚需要输入功能时设置
mux_mode:复用寄存器设置值
设置引脚复用
input_val:输入寄存器设置值
设置引脚输入特性
宏的最后跟随了一串数字 用来设置PIN的电气属性值 比如IO 的上/下拉、驱动能力和速度等


引脚状态初始化
在设备树里面节点 会变成plantform_dev 会执行probe进行匹配驱动
但是执行probe和drv配对之前 先回执行really_porbe() 这个函数和下面的引脚状态关系很大
用来初始化引脚值
//iomuxc节点
//imx6ull.dtsi
iomuxc: iomuxc@20e0000 {compatible = "fsl,imx6ul-iomuxc";reg = <0x20e0000 0x4000>;};
//继续扩展 引用iomux节点 **imx6ull-seeed-npi.dts**
&iomuxc {pinctrl-names = "default","init","sleep"; //选定引脚状态pinctrl-0 = <&pinctrl_uart1>; //一个状态就是一组引脚,比如对应下面pinctrl-1 =<&xxx>;pinctrl-2 =<&yyy>;
...pinctrl_uart1: uart1grp {fsl,pins = <MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX 0x1b0b1MX6UL_PAD_UART1_RX_DATA__UART1_DCE_RX 0x1b0b1>;};...
}
还是用上一个设备树举例 看了下面的例子
就知道驱动的引脚其实在 probe之前就已经初始化好了电气属性了
drivers/base/dd.c
static int really_probe(struct device *dev, struct device_driver *drv)
{int ret = -EPROBE_DEFER;
...
re_probe:dev->driver = drv;ret = pinctrl_bind_pins(dev); //这里根据iomux节点的 几个引脚状态来初始化引脚组
...if (dev->bus->probe) {ret = dev->bus->probe(dev);if (ret)goto probe_failed;} else if (drv->probe) {ret = drv->probe(dev); //这个是熟悉的probeif (ret)goto probe_failed;}...}
int pinctrl_bind_pins(struct device *dev)dev->pins->default_state = pinctrl_lookup_state(dev->pins->p,PINCTRL_STATE_DEFAULT);//从设备节点状态找到指定状态//本次是default状态dev->pins->init_state = pinctrl_lookup_state(dev->pins->p,PINCTRL_STATE_INIT); /这次找init状态if (IS_ERR(dev->pins->init_state))pinctrl_select_state(dev->pins->p,dev->pins->default_state);//没有init状态变成default状态elseret = pinctrl_select_state(dev->pins->p, dev->pins->init_state);//有的话引脚变成init状态相关文章:
13_pinctrl子系统
总结 pinctrl作为驱动 iomuxc节点在设备树里面 存储全部所需的引脚配置信息 iomux节点匹配pinctrl子系统 控制硬件外设的时候 要知道有哪些gpio 再看gpio有哪些服用寄存器 接着在程序配置gpio相关寄存器 这样搞效率很低 所以用iomux节点保存所有的引脚组 pinctrl驱动起来的时…...
Linux系统对于实施人员的价值
Linux系统对于实施人员的价值 随着互联网的发展,linux系统越来越突显了巨大的作用,很多互联网公司,政府企业,只要用到服务器的地方几乎都能看到linux系统的身影,可以说服务是不是在linux系统跑的代表了企业的技术水平&…...
ForkJoin 和 Stream并行流
还在用 for 循环计算两个数之间所有数的和吗?下面提供两种新方法! 1. ForkJoin 1.1 背景 要知道,在一个方法中,如果没有做特殊的处理,那么在方法开始到结束使用的都是同一个线程,无论你的业务有多复杂 那…...
逻辑优化-cofactor
1. 简介 逻辑综合中的Cofactor优化方法是一种重要的逻辑优化技术。它通过提取逻辑电路中的共同部分,从而简化电路、减小面积和延迟。该方法广泛应用于电子设计自动化(EDA)领域中的逻辑综合、等价转换和优化等方面。 Cofactor优化方法最早由…...
车道线检测CondLaneNet论文和源码解读
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution Paper:https://arxiv.org/pdf/2105.05003.pdf code:GitHub - aliyun/conditional-lane-detection 论文解读: 一、摘要 这项工作作为车道线检测任…...
vue3的插槽slots
文章目录普通插槽Test.vueFancyButton.vue具名插槽Test.vueBaseLayout.vue作用域插槽默认插槽Test.vueBaseLayout.vue具名作用域插槽Test.vueBaseLayout.vue普通插槽 父组件使用子组件时,在子组件闭合标签中提供内容模板,插入到子组件定义的出口的地方 …...
docker学校服务器管理
docker 学校服务器管理使用docker,docker使用go语言编写。对于docker的理解,需要知道几个关键字docker, scp,images, container。 docker-码头工人scp-传输命令images/repository-镜像container-容器 docker是码头工人,scp相当…...
pv和pvc
一、PV和PVC详解当前,存储的方式和种类有很多,并且各种存储的参数也需要非常专业的技术人员才能够了解。在Kubernetes集群中,放了方便我们的使用和管理,Kubernetes提出了PV和PVC的概念,这样Kubernetes集群的管理人员就…...
k8s篇之Pod 干预与 PDB
文章目录自愿干预和非自愿干预PDBPDB 示例分离集群所有者和应用程序所有者角色如何在集群上执行中断操作自愿干预和非自愿干预 Pod 不会消失,除非有人(用户或控制器)将其销毁,或者出现了不可避免的硬件或软件系统错误。 我们把这…...
Django学习17 -- ManytoManyField
1. ManyToManyField (参考:Django Documentation Release 4.1.4) 类定义 class ManyToManyField(to, **options)使用说明 A many-to-many relationship. Requires a positional argument: the class to which the model is related, which w…...
既然有MySQL了,为什么还要有Redis?
目录专栏导读一、同样是缓存,用map不行吗?二、Redis为什么是单线程的?三、Redis真的是单线程的吗?四、Redis优缺点1、优点2、缺点五、Redis常见业务场景六、Redis常见数据类型1、String2、List3、Hash4、Set5、Zset6、BitMap7、Bi…...
RSTP基础要点(上)
RSTP基础RSTP引入背景STP所存在的问题RSTP对于STP的改进端口角色重新划分端口状态重新划分快速收敛机制:PA机制端口快速切换边缘端口的引入RSTP引入背景 STP协议虽然能够解决环路问题,但是由于网络拓扑收敛较慢,影响了用户通信质量ÿ…...
Linux操作系统学习(信号处理)
文章目录进程信号信号的产生方式(信号产生前)1. 硬件产生2.调用系统函数向进程发信号3.软件产生4.定位进程崩溃的代码(进程异常退出产生信号)信号保存的方式(信号产生中)获取pending表&&修改block表…...
CopyOnWriteArrayList 源码解读
一、CopyOnWriteArrayList 源码解读 在 JUC 中,对于 ArrayList 的线程安全用法,比较推崇于使用 CopyOnWriteArrayList ,那 CopyOnWriteArrayList是怎么解决线程安全问题的呢,本文带领大家一起解读下 CopyOnWriteArrayList 的源码…...
方法
方法方法(函数)一、课前问答二、方法和函数三、方法的参数3.1 单个参数3.2 多个参数四、方法的返回值五、方法的多级调用六、递归方法(函数) 一、课前问答 1、break和continue的区别 2、嵌套循环的执行流程 3、二进制有哪些运算&…...
C/C++实现发送邮件功能(附源码)
C++常用功能源码系列 本文是C/C++常用功能代码封装专栏的导航贴。部分来源于实战项目中的部分功能提炼,希望能够达到你在自己的项目中拿来就用的效果,这样更好的服务于工作实践。 专栏介绍:专栏讲本人近10年后端开发常用的案例,以高质量的代码提取出来,并对其进行了介绍。…...
Java虚拟机JVM-运行时数据区域说明
及时编译器 HotSpot虚拟机中含有两个即时编译器,分别是编译耗时短但输出代码优化程度较低的客户端编译器(简称为C1)以及编译耗时长但输出代码优化质量也更高的服务端编译器(简称为C2),通常它们会在分层编译…...
修复电子管
年前在咸鱼捡漏买到了10根1G4G电子管,这是一种直热三极管,非常的少见。买回来的时候所有的灯丝都是通的,卖家说都是新的,库存货,但是外观实在是太糟糕了,看着就像被埋在垃圾场埋了几十年的那种,…...
【Java】反射机制和代理机制
目录一、反射1. 反射概念2. 反射的应用场景3. 反射机制的优缺点4. 反射实战获取 Class 对象的四种方式二、代理机制1. 代理模式2. 静态代理3. 动态代理3.1 JDK动态代理机制1. 介绍2.JDK 动态代理类使用步骤3. 代码示例3.2 CGLIB 动态代理机制1.介绍2.CGLIB 动态代理类使用步骤3…...
synchronized底层
Monitor概念一、Java对象头二、Monitor2.1、Monitor—工作原理2.2、Monitor工作原理—字节码角度2.2、synchronized进阶原理(优化)2.3、synchronized优化原理——轻量级锁2.4、synchronized优化原理——锁膨胀2.5、synchronized优化原理——自旋优化2.6、…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...
uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...
如何把工业通信协议转换成http websocket
1.现状 工业通信协议多数工作在边缘设备上,比如:PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发,当设备上用的是modbus从站时,采集设备数据需要开发modbus主站;当设备上用的是西门子PN协议时…...
C++中vector类型的介绍和使用
文章目录 一、vector 类型的简介1.1 基本介绍1.2 常见用法示例1.3 常见成员函数简表 二、vector 数据的插入2.1 push_back() —— 在尾部插入一个元素2.2 emplace_back() —— 在尾部“就地”构造对象2.3 insert() —— 在任意位置插入一个或多个元素2.4 emplace() —— 在任意…...
