《PyTorch深度学习实践》第十二讲循环神经网络基础
一、RNN简介
1、RNN网络最大的特点就是可以处理序列特征,就是我们的一组动态特征。比如,我们可以通过将前三天每天的特征(是否下雨,是否有太阳等)输入到网络,从而来预测第四天的天气。
我们可以看RNN的网络结构如下:

二、RNN cell用法

import torchbatch_size = 1 # 批处理大小
seq_len = 3 # 序列长度
input_size = 4 # 输入维度
hidden_size = 2 # 隐藏层维度cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)# (seq, batch, features)
dataset = torch.randn(seq_len, batch_size, input_size)
print(dataset)
hidden = torch.zeros(batch_size, hidden_size)
print(hidden)for idx, input in enumerate(dataset):print( '=' * 20, idx, '=' * 20)print( 'Input size: ', input.shape)hidden = cell(input, hidden)print( 'outputs size: ', hidden.shape)print(hidden)
三、RNN用法


import torchbatch_size = 1 # 批处理大小
seq_len = 3 # 序列长度
input_size = 4 # 输入维度
hidden_size = 2 # 隐藏层维度
num_layers = 4 # 隐藏层数量cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)# (seqLen, batchSize, inputSize)
inputs = torch.randn(seq_len, batch_size, input_size)
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)print( 'Output size:', out.shape)
print( 'Output:', out)
print( 'Hidden size: ', hidden.shape)
print( 'Hidden: ', hidden)
四、Embedding
把input变为稠密的数据

代码:
import torch# parameters
num_class = 4
input_size = 4
hidden_size = 8
embedding_size = 10
num_layers = 2
batch_size = 1
seq_len = 5# 准备数据集
idx2char = ['e', 'h', 'l', 'o']
x_data = [[1, 0, 2, 2, 3]] # (batch, seq_len)
y_data = [3, 1, 2, 3, 2] # (batch * seq_len)inputs = torch.LongTensor(x_data) # Input should be LongTensor: (batchSize, seqLen)
labels = torch.LongTensor(y_data) # Target should be LongTensor: (batchSize * seqLen)# 构建模型
class Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.emb = torch.nn.Embedding(input_size, embedding_size)self.rnn = torch.nn.RNN(input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True)self.fc = torch.nn.Linear(hidden_size, num_class)def forward(self, x):hidden = torch.zeros(num_layers, x.size(0), hidden_size)x = self.emb(x) # (batch, seqLen, embeddingSize)x, _ = self.rnn(x, hidden) # 输出(𝒃𝒂𝒕𝒄𝒉𝑺𝒊𝒛𝒆, 𝒔𝒆𝒒𝑳𝒆𝒏, hidden_size)x = self.fc(x) # 输出(𝒃𝒂𝒕𝒄𝒉𝑺𝒊𝒛𝒆, 𝒔𝒆𝒒𝑳𝒆𝒏, 𝒏𝒖𝒎𝑪𝒍𝒂𝒔𝒔)return x.view(-1, num_class) # reshape to use Cross Entropy: (𝒃𝒂𝒕𝒄𝒉𝑺𝒊𝒛𝒆×𝒔𝒆𝒒𝑳𝒆𝒏, 𝒏𝒖𝒎𝑪𝒍𝒂𝒔𝒔)net = Model()# 损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.05)# 训练模型
for epoch in range(15):optimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()_, idx = outputs.max(dim=1)idx = idx.data.numpy()print('Predicted: ', ''.join([idx2char[x] for x in idx]), end='')print(', Epoch [%d/15] loss = %.3f' % (epoch + 1, loss.item()))
运行结果:

相关文章:
《PyTorch深度学习实践》第十二讲循环神经网络基础
一、RNN简介 1、RNN网络最大的特点就是可以处理序列特征,就是我们的一组动态特征。比如,我们可以通过将前三天每天的特征(是否下雨,是否有太阳等)输入到网络,从而来预测第四天的天气。 我们可以看RN…...
蓝桥杯算法题汇总
一.线性表:链式 例题:旋转链表 二.栈: 例题:行星碰撞问题 三.队列 三.数组和矩阵 例题: 四.哈希表 五.二叉树 主要方法是递归 主要考察点是遍历:前序,中序,后序遍历,层…...
【MySQL】学习多表查询和笛卡尔积 - 副本
](https://img-blog.csdnimg.cn/21dd41dce63a4f2da07b9d879ad0120b.png#pic_center) ??个人主页: ??热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ??个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-N8PeTKG6uLu4bJuM {font-family:“trebuchet ms”,…...
C++设计模式_创建型模式_工厂方法模式
目录 C设计模式_创建型模式_工厂方法模式 一、简单工厂模式 1.1 简单工厂模式引入 1.2 简单工厂模式 1.3 简单工厂模式利弊分析 1.4 简单工厂模式的UML图 二、工厂方法模式 2.1 工厂模式和简单工厂模式比较 2.2 工厂模式代码实现 2.3 工厂模式UML 三、抽象工厂模式 3.1 战斗场景…...
matlab批量替换txt文本文件的特定行的内容
1.下图所示,我想要替换第14行。 2.运行代码后,第14行已经更改为需要的内容。 clc,clear; %%----------------------需要更改的地方------------------------------------ % 设置要操作的文本文件路径,替换为你自己的文件路径 path D:\paper_…...
Qt Creator配置MSVC编译环境、调试环境
在windows上开发,一般使用Qt Creator自带mingw编译器,编译和调试都很方便,安装Qt时勾选后,自动配置完毕。 但是有时候我们需要使用MSVC的编译器,这个时候我们没法直接使用,需要配置环境才能使用࿰…...
Linux系统运维命令:终止监听在 TCP端口80上的所有进程(使用lsof,grep,awk组合命令, 终止监听在 TCP某个端口上的所有进程)
目 录 一、需求 二、解决方法 1、解决思路 2、命令 三、实例演示和命令解释 1、实例演示 (1)查看目前有哪些在TCP端口80监听的进程 (2)、使用命令 (3)、查看效果 2、命令解…...
开源模型应用落地-业务优化篇(七)
一、背景 在本篇学习中,我们要介绍消息中间件,它可以帮助我们将核心和辅助流程分开,让它们互相独立。同时,还要关注在使用消息中间件时需要注意的地方。并且将这种思想应用到其他实际场景中。 二、术语 2.1、消息中间件 消息中间件是一种在分布式系统中用于处理消息传递的…...
序列化-反序列化--json-xml-protoBuf
序列化和反序列化 数据在网络中传输需要按照一定的规范组成。这些规定的规范有json,xml,protobuf。 序列化 也就是说数据需要通过网络传输时,需要把数据转化为需要的传输格式,所以需要把需要传输的数据生成json或者xml或者protobuf语言格式文件&#…...
ubuntu 配置nacos开机启动
在Ubuntu系统上配置Nacos服务开机启动,可以通过创建systemd服务单元文件来实现。以下是步骤: 创建Systemd服务文件: 打开终端,使用文本编辑器(如nano或vim)新建一个服务文件: sudo nano /etc/sy…...
单节点大数据平台运维脚本
单节点的大数据集群运维脚本 vi /opt/bash/bigdata-operate-script.sh#!/bin/bashsource ~/.bashrc source /etc/profilehostnamebigdata#程序运行必要组件 important_components("kafka" "clickhouse-server" "elasticsearch" "kibana&qu…...
HTML基础知识
目录 1.初识网页 2.html:超文本标记语言 2.1排版标签 标题标签 段落标签 换行标签 水平线标签 2.2文本格式化标签 2.3媒体标签 图片标签 路径 音频标签 视频标签 2.4链接标签 2.5列表标签 2.5.1无序列表 2.5.2有序列表 2.5.3自定义列表 2.6表格…...
牛客禁用题:求阶乘
思路:在新类中使用全局变量进行运算,在主类中定义新类数组,通过构造函数的调用次数返回阶乘 #include <type_traits> class add{public:static int count;static int tmp;add(){countcounttmp;tmp;} }; int add::count0; int add::t…...
spring.factories的常用配置项
概述 spring.factories 实现是依赖 spring-core 包里的 SpringFactoriesLoader 类,这个类实现了检索 META-INF/spring.factories 文件,并获取指定接口的配置的功能。 Spring Factories机制提供了一种解耦容器注入的方式,帮助外部包&am…...
数据库-第二/三章 关系数据库和标准语言SQL【期末复习|考研复习】
前言 总结整理不易,希望大家点赞收藏。 给大家整理了一下计数据库系统概论中的重点概念,以供大家期末复习和考研复习的时候使用。 参考资料是王珊老师和萨师煊老师的数据库系统概论(第五版)。 文章目录 前言第二、三章 关系数据库和标准语言SQL2.1 关系2…...
【办公类-21-05】20240227单个word按“段落数”拆分多个Word(成果汇编 只有段落文字 1拆5)
作品展示 背景需求 前文对一套带有段落文字和表格的word进行13份拆分 【办公类-21-04】20240227单个word按“段落数”拆分多个Word(三级育婴师操作参考题目1拆13份)-CSDN博客文章浏览阅读293次,点赞8次,收藏3次。【办公类-21-04…...
【前端素材】推荐优质后台管理系统网页my-Task平台模板(附源码)
一、需求分析 1、系统定义 后台管理系统是一种用于管理网站、应用程序或系统的工具,通常由管理员使用。后台管理系统是一种用于管理和控制网站、应用程序或系统的管理界面。它通常被设计用来让网站或应用程序的管理员或运营人员管理内容、用户、数据以及其他相关功…...
Linux高负载排查最佳实践
在Linux系统中,经常会因为负载过高导致各种性能问题。那么如何进行排查,其实是有迹可循,而且模式固定。 本次就来分享一下,CPU占用过高、磁盘IO占用过高的排查方法。 还是那句话,以最佳实践入手,真传一句话…...
【python开发】网络编程(上)
这里写目录标题 一、必备基础(一)网络架构1、交换机2、路由器3、三层交换机4、小型企业基础网络架构5、家庭网络架构6、互联网 (二)网络核心词汇1、子网掩码和IP2、DHCP3、内网和公网IP4、云服务器5、端口6、域名 一、必备基础 &…...
php源码 单色bmp图片取模工具 按任意方式取模 生成字节数组 自由编辑点阵
http://2.wjsou.com/BMP/index.html 想试试chatGPT4生成,还是要手工改 php 写一个网页界面上可以选择一张bmp图片,界面上就显示这张bmp图片, 点生成取模按钮,在图片下方会显示这张bmp图片的取模数据。 取模规则是按界面设置的&a…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
