刷题笔记day27-回溯算法2
216. 组合总和 III
这个思路还是,三部曲:
- 终止条件
- 处理单层节点
- 回溯节点
题中说的是,1到9的数,不能有重复。
k个数,和为n。
那么只要 len(path) == k 的时候,判断 n 为0,就可以入切片了。
func combinationSum3(k int, n int) [][]int {path = []int{}result = [][]int{}// tmpPath = make([]int, k)nfs(k, n, 1)return result
}var path []int
var tmpPath []int
var result [][]int
func nfs(k, n, startIndex int) bool {// 终止条件if (len(path) == k ) {if n == 0 {var tmpPath = make([]int, k)copy(tmpPath, path)result = append(result, tmpPath)}return true}// 广度遍历for i := startIndex; i <= 9; i++ {// 处理单个节点path = append(path, i)// 递归nfs(k, n-i, i+1)// 回溯if (len(path) > 0) {path = path[:len(path)-1]}}return true
}
17. 电话号码的字母组合
这个思路就是在,每一个startIndex,都是一个key,然后在横向遍历字符串
终止条件是,startIndex > maxIndex。此时就是每一个数字都遍历到了
var table = map[byte]string {'2': "abc",'3': "def",'4': "ghi",'5': "jkl",'6': "mno",'7': "qprs",'8': "tuv",'9': "wxyz",
}var digit string
var path []string
var result []stringfunc letterCombinations(digits string) []string {// 这个思路还是组合的问题if digits == "" {return []string{}}digit = digitspath = []string{}result = []string{}nfs(0, len(digits)-1)return result
}func nfs(currIndex, maxIndex int) bool {// 终止条件if currIndex > maxIndex {var tmp stringfor _, x := range path {tmp += x}result = append(result, tmp)return true}var key = digit[currIndex]var data = table[key]for i := 0; i < len(data); i++ {// 单个节点path = append(path, string(data[i]))nfs(currIndex+1, maxIndex)// 回溯if (len(path) > 0) {path = path[:len(path)-1]}}return true
}
相关文章:
刷题笔记day27-回溯算法2
216. 组合总和 III 这个思路还是,三部曲: 终止条件处理单层节点回溯节点 题中说的是,1到9的数,不能有重复。 k个数,和为n。 那么只要 len(path) k 的时候,判断 n 为0,就可以入切片了。 fun…...
前端架构: 脚手架命令行交互核心实现之inquirer和readline的应用教程
命令行交互核心实现 核心目标:实现命令行行交互,如List命令行的交互呢比命令行的渲难度要更大,因为它涉及的技术点会会更多它涉及以下技术点 键盘输入的一个监听 (这里通过 readline来实现)计算命令行窗口的尺寸清屏光标的移动输出流的静默 …...
【C++初阶】内存管理
目录 一.C语言中的动态内存管理方式 二.C中的内存管理方式 1.new/delete操作内置类型 2.new和delete操作自定义类型 3.浅识抛异常 (内存申请失败) 4.new和delete操作自定义类型 三.new和delete的实现原理 1.内置类型 2.自定义类型 一.C语…...
《PyTorch深度学习实践》第十二讲循环神经网络基础
一、RNN简介 1、RNN网络最大的特点就是可以处理序列特征,就是我们的一组动态特征。比如,我们可以通过将前三天每天的特征(是否下雨,是否有太阳等)输入到网络,从而来预测第四天的天气。 我们可以看RN…...
蓝桥杯算法题汇总
一.线性表:链式 例题:旋转链表 二.栈: 例题:行星碰撞问题 三.队列 三.数组和矩阵 例题: 四.哈希表 五.二叉树 主要方法是递归 主要考察点是遍历:前序,中序,后序遍历,层…...
【MySQL】学习多表查询和笛卡尔积 - 副本
](https://img-blog.csdnimg.cn/21dd41dce63a4f2da07b9d879ad0120b.png#pic_center) ??个人主页: ??热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ??个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-N8PeTKG6uLu4bJuM {font-family:“trebuchet ms”,…...
C++设计模式_创建型模式_工厂方法模式
目录 C设计模式_创建型模式_工厂方法模式 一、简单工厂模式 1.1 简单工厂模式引入 1.2 简单工厂模式 1.3 简单工厂模式利弊分析 1.4 简单工厂模式的UML图 二、工厂方法模式 2.1 工厂模式和简单工厂模式比较 2.2 工厂模式代码实现 2.3 工厂模式UML 三、抽象工厂模式 3.1 战斗场景…...
matlab批量替换txt文本文件的特定行的内容
1.下图所示,我想要替换第14行。 2.运行代码后,第14行已经更改为需要的内容。 clc,clear; %%----------------------需要更改的地方------------------------------------ % 设置要操作的文本文件路径,替换为你自己的文件路径 path D:\paper_…...
Qt Creator配置MSVC编译环境、调试环境
在windows上开发,一般使用Qt Creator自带mingw编译器,编译和调试都很方便,安装Qt时勾选后,自动配置完毕。 但是有时候我们需要使用MSVC的编译器,这个时候我们没法直接使用,需要配置环境才能使用࿰…...
Linux系统运维命令:终止监听在 TCP端口80上的所有进程(使用lsof,grep,awk组合命令, 终止监听在 TCP某个端口上的所有进程)
目 录 一、需求 二、解决方法 1、解决思路 2、命令 三、实例演示和命令解释 1、实例演示 (1)查看目前有哪些在TCP端口80监听的进程 (2)、使用命令 (3)、查看效果 2、命令解…...
开源模型应用落地-业务优化篇(七)
一、背景 在本篇学习中,我们要介绍消息中间件,它可以帮助我们将核心和辅助流程分开,让它们互相独立。同时,还要关注在使用消息中间件时需要注意的地方。并且将这种思想应用到其他实际场景中。 二、术语 2.1、消息中间件 消息中间件是一种在分布式系统中用于处理消息传递的…...
序列化-反序列化--json-xml-protoBuf
序列化和反序列化 数据在网络中传输需要按照一定的规范组成。这些规定的规范有json,xml,protobuf。 序列化 也就是说数据需要通过网络传输时,需要把数据转化为需要的传输格式,所以需要把需要传输的数据生成json或者xml或者protobuf语言格式文件&#…...
ubuntu 配置nacos开机启动
在Ubuntu系统上配置Nacos服务开机启动,可以通过创建systemd服务单元文件来实现。以下是步骤: 创建Systemd服务文件: 打开终端,使用文本编辑器(如nano或vim)新建一个服务文件: sudo nano /etc/sy…...
单节点大数据平台运维脚本
单节点的大数据集群运维脚本 vi /opt/bash/bigdata-operate-script.sh#!/bin/bashsource ~/.bashrc source /etc/profilehostnamebigdata#程序运行必要组件 important_components("kafka" "clickhouse-server" "elasticsearch" "kibana&qu…...
HTML基础知识
目录 1.初识网页 2.html:超文本标记语言 2.1排版标签 标题标签 段落标签 换行标签 水平线标签 2.2文本格式化标签 2.3媒体标签 图片标签 路径 音频标签 视频标签 2.4链接标签 2.5列表标签 2.5.1无序列表 2.5.2有序列表 2.5.3自定义列表 2.6表格…...
牛客禁用题:求阶乘
思路:在新类中使用全局变量进行运算,在主类中定义新类数组,通过构造函数的调用次数返回阶乘 #include <type_traits> class add{public:static int count;static int tmp;add(){countcounttmp;tmp;} }; int add::count0; int add::t…...
spring.factories的常用配置项
概述 spring.factories 实现是依赖 spring-core 包里的 SpringFactoriesLoader 类,这个类实现了检索 META-INF/spring.factories 文件,并获取指定接口的配置的功能。 Spring Factories机制提供了一种解耦容器注入的方式,帮助外部包&am…...
数据库-第二/三章 关系数据库和标准语言SQL【期末复习|考研复习】
前言 总结整理不易,希望大家点赞收藏。 给大家整理了一下计数据库系统概论中的重点概念,以供大家期末复习和考研复习的时候使用。 参考资料是王珊老师和萨师煊老师的数据库系统概论(第五版)。 文章目录 前言第二、三章 关系数据库和标准语言SQL2.1 关系2…...
【办公类-21-05】20240227单个word按“段落数”拆分多个Word(成果汇编 只有段落文字 1拆5)
作品展示 背景需求 前文对一套带有段落文字和表格的word进行13份拆分 【办公类-21-04】20240227单个word按“段落数”拆分多个Word(三级育婴师操作参考题目1拆13份)-CSDN博客文章浏览阅读293次,点赞8次,收藏3次。【办公类-21-04…...
【前端素材】推荐优质后台管理系统网页my-Task平台模板(附源码)
一、需求分析 1、系统定义 后台管理系统是一种用于管理网站、应用程序或系统的工具,通常由管理员使用。后台管理系统是一种用于管理和控制网站、应用程序或系统的管理界面。它通常被设计用来让网站或应用程序的管理员或运营人员管理内容、用户、数据以及其他相关功…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
