当前位置: 首页 > news >正文

【C++ AVL树】

文章目录

    • AVL树
      • AVL树的概念
      • AVL树节点的定义
      • AVL树的插入
      • AVL树的旋转
        • 右单旋
        • 左单旋
        • 左右双旋
        • 右左双旋
      • 代码实现
    • 总结

AVL树

AVL树的概念

二叉搜索树在顺序有序或接近有序的情况下,而插入搜索树将退化为单叉树,此时查找的时间复杂度为O(n),效率低下。
两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新节点后,保证每个节点的左右子树高度差的绝对值不超过1,即可降低树的高度,减少平均搜索长度。因此,AVL树也被叫做高度平衡二叉搜索树,插入,查找,删除在平均和最坏情况下的时间复杂度都是O( l o g 2 n log_2 n log2n)。

AVL树节点的定义

	template<class K, class V>struct AVLTreeNode{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;int _bf; //balance factor 平衡因子AVLTreeNode(const pair<K, V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_bf(0){}};

注意:实现AVL树平衡因子不是必须的,只不过有了平衡因子帮助我们更便捷地控制整棵树。

AVL树的插入

  1. 根据二叉搜索树的规则插入新节点
bool Insert(const pair<K, V> & kv){root为空,特殊处理if (_root == nullptr){_root = new Node(kv);return true;}Node* curr = _root;Node* parent = nullptr;while (curr){if (curr->_kv.first < kv.first){parent = curr;curr = curr->_right;}else if (curr->_kv.first > kv.first){parent = curr;curr = curr->_left;}else{return false;}}将新节点和其父亲节点链接起来Node* newnode = new Node(kv);if (parent->_kv.first < kv.first)parent->_right = newnode;elseparent->_left = newnode;newnode->_parent = parent;......}
  1. 不断向上更新平衡因子
    1. 当前平衡因子为0,说明插入之前平衡因子为1 / -1,插入之后不改变树的高度,不会影响其他祖先节点,此时更新结束。
    2. 当前平衡因子为1 / -1,说明插入之前平衡因子为0,插入之后当前节点地高度发生变化,会影响其他祖先节点,但是不违反规则,需要向上对祖先节点进行更新,直至当前节点为root。
    3. 当前平衡因子为 2 / -2,此时当前节点所在地子树违反了平衡规则,需要进行处理–>旋转。
while (parent)
{if (parent->_left == newnode){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0)break;else if (parent->_bf == -1 || parent->_bf == 1){newnode = parent;parent = parent->_parent;}else if (parent->_bf == -2 || parent->_bf == 2){旋转处理}else{assert(false);}
}

AVL树的旋转

右单旋

在这里插入图片描述

void RotatoR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent)ppnode->_left = subL;elseppnode->_right = subL;subL->_parent = ppnode;}parent->_bf = 0;subL->_bf = 0;
}
左单旋

在这里插入图片描述

void RotatoL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent)ppnode->_left = subR;elseppnode->_right = subR;subR->_parent = ppnode;}parent->_bf = 0;subR->_bf = 0;
}
左右双旋

在这里插入图片描述
旋转之前,45的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整

void RotatoLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotatoL(subL);RotatoR(parent);subLR->_bf = 0;if (bf == 0){subL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subL->_bf = -1;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;parent->_bf = 1;}
}
右左双旋

在这里插入图片描述

void RotatoRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;subRL->_bf = 0;RotatoR(subR);RotatoL(parent);if (bf == 0){subR->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;parent->_bf = 0;}
}

代码实现

namespace xxx
{template<class K, class V>struct AVLTreeNode{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;int _bf; //balance factor 平衡因子AVLTreeNode(const pair<K, V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_bf(0){}};template<class K, class V>class AVLTree{typedef AVLTreeNode<K, V> Node;public:bool Insert(const pair<K, V> & kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* curr = _root;Node* parent = nullptr;while (curr){if (curr->_kv.first < kv.first){parent = curr;curr = curr->_right;}else if (curr->_kv.first > kv.first){parent = curr;curr = curr->_left;}else{return false;}}Node* newnode = new Node(kv);if (parent->_kv.first < kv.first)parent->_right = newnode;elseparent->_left = newnode;newnode->_parent = parent;while (parent){if (parent->_left == newnode){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0)break;else if (parent->_bf == -1 || parent->_bf == 1){newnode = parent;parent = parent->_parent;}else if (parent->_bf == -2 || parent->_bf == 2){if (parent->_bf == 2 && newnode->_bf == 1){RotatoL(parent);}else if (parent->_bf == -2 && newnode->_bf == -1){RotatoR(parent);}else if (parent->_bf == -2 && newnode->_bf == 1){RotatoLR(parent);}else if (parent->_bf == 2 && newnode->_bf == -1){RotatoRL(parent);}else{assert(false);}break;}else{assert(false);}}return true;}void RotatoL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent)ppnode->_left = subR;elseppnode->_right = subR;subR->_parent = ppnode;}parent->_bf = 0;subR->_bf = 0;}void RotatoR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent)ppnode->_left = subL;elseppnode->_right = subL;subL->_parent = ppnode;}parent->_bf = 0;subL->_bf = 0;}void RotatoLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotatoL(subL);RotatoR(parent);subLR->_bf = 0;if (bf == 0){subL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subL->_bf = -1;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;parent->_bf = 1;}}void RotatoRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;subRL->_bf = 0;RotatoR(subR);RotatoL(parent);if (bf == 0){subR->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;parent->_bf = 0;}}void InOrder(){_InOrder(_root);cout << endl;}bool IsAVLTree(){return _IsAVLTree(_root);}private:bool _IsAVLTree(Node* root){if (root == nullptr)return true;int leftH = Height(root->_left);int rightH = Height(root->_right);return abs(leftH - rightH) <= 1&& _IsAVLTree(root->_left)&& _IsAVLTree(root->_right);}int Height(Node* node){if (node == nullptr)return 0;int leftH = Height(node->_left);int rightH = Height(node->_right);return 1 + max(leftH, rightH);}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.second << ' ';_InOrder(root->_right);}Node* _root = nullptr;};
}

总结

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

相关文章:

【C++ AVL树】

文章目录 AVL树AVL树的概念AVL树节点的定义AVL树的插入AVL树的旋转右单旋左单旋左右双旋右左双旋 代码实现 总结 AVL树 AVL树的概念 二叉搜索树在顺序有序或接近有序的情况下&#xff0c;而插入搜索树将退化为单叉树&#xff0c;此时查找的时间复杂度为O(n)&#xff0c;效率低…...

记录一次架构优化处理性能从3千->3万

0.背景 优化Kafka消费入Es&#xff0c;适配600台设备上报数据&#xff0c;吞吐量到达2万每秒 1.环境配置 2.压测工具 3.未优化之前的消费逻辑 4.优化之后的消费流程 5.多线程多ESclient 6.修改ES配置&#xff0c;增加kafka分区&#xff0c;增加线程&#xff0c;提升吞吐量 7.…...

c++二进制位运算使用方法

文章主要内容&#xff1a; C 中的位运算符主要用于对整数类型的数据进行位操作&#xff0c;包括按位与&#xff08;&&#xff09;、按位或&#xff08;|&#xff09;、按位异或&#xff08;^&#xff09;、取反&#xff08;~&#xff09;、左移&#xff08;<<&#…...

TypeScript之JSON点语法调用

场景 当我们想要通过将JSON中的属性名赋值给一个变量,并且通过点语法实现字段调用.常规的String变量保存会出现下述问题,就可以通过String[][]实现动态调用字段. let parentJSON{"name":"liupeng"}let a:String;Object.keys(parentJSON).forEach(key >…...

手撕Java集合之简易版Deque(LinkedList)

在目前&#xff0c;许多互联网公司的面试已经要求能手撕集合源码&#xff0c;集合源码本身算是源码里比较简单的一部分&#xff0c;但是要在面试极短的10来分钟内快速写出一个简易版的源码还是比较麻烦的&#xff0c;很容易出现各种小问题。所以在平时就要注重这方面的联系。 以…...

MySQL知识点归纳总结(二)

10、MVCC实现原理&#xff1f; 事务ID&#xff08;Transaction ID&#xff09;&#xff1a;每个事务在执行时都会被分配一个唯一的事务ID&#xff0c;用于标识该事务的开始时间顺序。事务ID是一个递增的整数&#xff0c;随着每个新事务的开始而递增。 Undo日志&#xff08;Un…...

vue:实现顶部消息横向滚动通知

前言 系统顶部展示一个横向滚动的消息通知&#xff0c;就是消息内容从右往左一直滚动。 效果如下&#xff1a; 代码 使用 <template><div class"notic-bar"><img :src"notic" class"notice-img" /><div class"noti…...

[笔记] wsl 禁用配置 win系统环境变量+代理

wsl 配置禁用 win系统环境变量 进入 wsl 的 /etc/wsl.conf 目录&#xff0c;增加以下配置&#xff1a; [interop] enabledfalse appendWindowsPathfalse然后退出wsl&#xff0c;并且执行关闭正在运行的 wsl&#xff0c;执行命令 wsl --shutdown 最后重新进入wsl 即可。 参考…...

Mysql标量子查询

目录 子查询标量子查询数据准备 子查询 SQL语句中嵌套select语句&#xff0c;称为嵌套查询&#xff0c;又称子查询。 SELECT * FROM t1 WHERE column1 ( SELECT column1 FROM t2 ... );子查询外部的语句可以是insert / update / delete / select 的任何一个&…...

深入了解Java虚拟机(JVM)

Java虚拟机&#xff08;JVM&#xff09;是Java程序运行的核心组件&#xff0c;它负责解释执行Java字节码&#xff0c;并在各种平台上执行。JVM的设计使得Java具有跨平台性&#xff0c;开发人员只需编写一次代码&#xff0c;就可以在任何支持Java的系统上运行。我们刚开始学习Ja…...

Image Fusion via Vision-Language Model【文献阅读】

阅读目录 文献阅读AbstractIntroduction3. Method3.1. Problem Overview3.2. Fusion via Vision-Language Model 4. Vision-Language Fusion Datasets5. Experiment5.1Infrared and Visible Image Fusion 6. Conclusion个人总结 文献阅读 原文下载&#xff1a;https://arxiv.or…...

探索Manticore Search:开源全文搜索引擎的强大功能

在当今信息爆炸的时代&#xff0c;数据的快速检索变得至关重要。无论是在电子商务网站、新闻门户还是企业内部文档&#xff0c;高效的搜索引擎都是确保用户满意度和工作效率的关键因素之一。而在搜索引擎领域&#xff0c;Manticore Search 作为一款开源的全文搜索引擎&#xff…...

AI 笔记助手,你的思路整理助手

大家好&#xff0c;今天给大家介绍一款非常实用的 AI 笔记助手——AI Note。这款助手就像是一个贴心的小助手&#xff0c;能帮助我们整理笔记&#xff0c;提高学习和工作效率。 &#x1f916; AI Note 可以智能总结笔记内容&#xff0c;准确标记重点&#xff0c;让我们更快地获…...

EchoServer回显服务器简单测试

目录 工具介绍 工具使用 测试结果 工具介绍 github的一个开源项目,是一个测压工具 EZLippi/WebBench: Webbench是Radim Kolar在1997年写的一个在linux下使用的非常简单的网站压测工具。它使用fork()模拟多个客户端同时访问我们设定的URL&#xff0c;测试网站在压力下工作的…...

车灯修复UV胶的优缺点有哪些?

车灯修复UV胶的优点如下&#xff1a; 优点&#xff1a; 快速固化&#xff1a;通过紫外光照射&#xff0c;UV胶可以在5-15秒内迅速固化&#xff0c;提高了修复效率。高度透明&#xff1a;固化后透光率高&#xff0c;几乎与原始车灯材料无法区分&#xff0c;修复后车灯外观更加…...

探讨倒排索引Elasticsearch面试与实战:从理论到实践

在当前大数据时代&#xff0c;Elasticsearch&#xff08;以下简称为ES&#xff09;作为一种强大的搜索和分析引擎&#xff0c;受到了越来越多企业的青睐。因此&#xff0c;对于工程师来说&#xff0c;掌握ES的面试准备和实战经验成为了必备技能之一。本文将从ES的面试准备和实际…...

网安入门18-XSS(靶场实战)

HTML实体化编码 为了避免 XSS 攻击&#xff0c;会将<>编码为<与>&#xff0c;这些就是 HTML 实体编码。 编码前编码后不可分的空格 < (小于符号)< > (大于符号)> & (与符号)&amp;″ (双引号)&quot;’ (单引号)&apos;© (版权符…...

爬虫的一些小技巧总结

一、在爬虫中&#xff0c;爬取的数据类型如下 1.document:返回的是一个HTML文档 2.png:无损的图片&#xff0c;jpg:压缩后的图片,wbep:有损压缩&#xff0c;比png差&#xff0c;比jpg好 3.avgxml图像编码字符串 4.script:脚本文件&#xff0c;依据一定格式编写的可执行的文…...

LeetCode---386周赛

题目列表 3046. 分割数组 3047. 求交集区域内的最大正方形面积 3048. 标记所有下标的最早秒数 I 3049. 标记所有下标的最早秒数 II 一、分割数组 这题简单的思维题&#xff0c;要想将数组分为两个数组&#xff0c;且分出的两个数组中数字不会重复&#xff0c;很显然一个数…...

React之数据绑定以及表单处理

一、表单元素 像<input>、<textarea>、<option>这样的表单元素不同于其他元素&#xff0c;因为他们可以通过用户交互发生变化。这些元素提供的界面使响应用户交互的表单数据处理更加容易 交互属性&#xff0c;用户对一下元素交互时通过onChange回调函数来监听…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...

js 设置3秒后执行

如何在JavaScript中延迟3秒执行操作 在JavaScript中&#xff0c;要设置一个操作在指定延迟后&#xff08;例如3秒&#xff09;执行&#xff0c;可以使用 setTimeout 函数。setTimeout 是JavaScript的核心计时器方法&#xff0c;它接受两个参数&#xff1a; 要执行的函数&…...

FOPLP vs CoWoS

以下是 FOPLP&#xff08;Fan-out panel-level packaging 扇出型面板级封装&#xff09;与 CoWoS&#xff08;Chip on Wafer on Substrate&#xff09;两种先进封装技术的详细对比分析&#xff0c;涵盖技术原理、性能、成本、应用场景及市场趋势等维度&#xff1a; 一、技术原…...