力扣 第 125 场双周赛 解题报告 | 珂学家 | 树形DP + 组合数学
前言

整体评价
T4感觉有简单的方法,无奈树形DP一条路上走到黑了,这场还是有难度的。
T1. 超过阈值的最少操作数 I
思路: 模拟
class Solution {public int minOperations(int[] nums, int k) {return (int)Arrays.stream(nums).filter(x -> x < k).count();}
}
T2. 超过阈值的最少操作数 II
思路: 模拟
按题意模拟即可,需要注意int溢出问题就行。
class Solution {public int minOperations(int[] nums, int k) {PriorityQueue<Long> pq = new PriorityQueue<>();for (long num : nums) {pq.offer(num);}int ans = 0;while (pq.peek() < k) {long x = pq.poll(), y = pq.poll();pq.offer(Math.min(x, y) * 2 + Math.max(x, y));ans++;}return ans;}
}
T3. 在带权树网络中统计可连接服务器对数目
思路: 枚举 + dfs/bfs + 组合数学
因为树的点数n( n ≤ 1000 n\le1000 n≤1000), 所以枚举点,从该点进行dfs/bfs,然后对每个分支进行组合统计。
组合统计的核心
点 u 出发的各个分支满足整除的数,组合序列为 c 0 , c 1 , c 2 , c 3 , . . . , c m 点u出发的各个分支满足整除的数,组合序列为 c_0, c_1, c_2, c_3, ..., c_m 点u出发的各个分支满足整除的数,组合序列为c0,c1,c2,c3,...,cm
其 s = ∑ i = 0 i = m c i 其 s = \sum_{i=0}^{i=m} c_i 其s=i=0∑i=mci
结果为 r e s [ u ] = ( ∑ i = 0 i = m c i ∗ ( s − c i ) ) / 2 结果为 res[u] = (\sum_{i=0}^{i=m} c_i * (s - c_i)) / 2 结果为res[u]=(i=0∑i=mci∗(s−ci))/2
这样时间复杂度为 O ( n 2 ) O(n^2) O(n2), 是可以接受的。
class Solution {List<int[]> []g;int signalSpeed;// fa是阻断点int bfs(int u, int w, int fa) {int res = 0;boolean[] vis = new boolean[g.length];Deque<int[]> deq = new ArrayDeque<>();vis[u] = true;deq.offer(new int[] {u, w});if (w % signalSpeed == 0) {res ++;}while (!deq.isEmpty()) {int[] cur = deq.poll();int p = cur[0];int v = cur[1];for (int[] e: g[p]) {if (e[0] == fa) continue;if (vis[e[0]]) continue;if ((v + e[1]) % signalSpeed == 0) res++;deq.offer(new int[] {e[0], v + e[1]});vis[e[0]] = true;}}return res;}public int[] countPairsOfConnectableServers(int[][] edges, int signalSpeed) {int n = edges.length + 1;g = new List[n];Arrays.setAll(g, x->new ArrayList<>());this.signalSpeed = signalSpeed;for (int[] e: edges) {g[e[0]].add(new int[] {e[1], e[2]});g[e[1]].add(new int[] {e[0], e[2]});}int[] res = new int[n];for (int i = 0; i < n; i++) {int sum = 0;List<Integer> lists = new ArrayList<>();for (int[] e: g[i]) {int tmp = bfs(e[0], e[1], i);lists.add(tmp);sum += tmp;}int tot = 0;for (int j = 0; j < lists.size(); j++) {tot += lists.get(j) * (sum - lists.get(j));}res[i] = tot / 2;}return res;}}
如果该题把n变成 n ≤ 1 0 5 n\le10^5 n≤105, 那该如何解呢?
感觉换根 D P 可行,但是需要限制 s i g n a l S p e e d 范围在 100 之内 , 这样可控制在 O ( 1 0 7 ) 感觉换根DP可行,但是需要限制 signalSpeed 范围在100之内, 这样可控制在O(10^7) 感觉换根DP可行,但是需要限制signalSpeed范围在100之内,这样可控制在O(107)
如果signalSpeed很大,感觉没辙啊。
T4. 最大节点价值之和
思路: 树形DP
树形DP的解法更加具有通用性,所以比赛就沿着这个思路写。
如果操作不是异或,那这个思路就更有意义 如果操作不是异或,那这个思路就更有意义 如果操作不是异或,那这个思路就更有意义
对于任意点u, 其具备两个状态。
d p [ u ] [ 0 ] , d p [ u ] [ 1 ] , 表示参与和没有参与异或下的以 u 为根节点的子树最大和。 dp[u][0], dp[u][1], 表示参与和没有参与异或下的以u为根节点的子树最大和。 dp[u][0],dp[u][1],表示参与和没有参与异或下的以u为根节点的子树最大和。
那么其转移方程,其体现在当前节点u和其子节点集合S( v ∈ u 的子节点 v\in u的子节点 v∈u的子节点)的迭代递推转移。
class Solution {int k;int[] nums;List<Integer>[]g;long[][] dp;void dfs(int u, int fa) {// 该节点没参与, 该节点参与了long r0 = nums[u], r1 = Long.MIN_VALUE / 10;for (int v: g[u]) {if (v == fa) continue;dfs(v, u);long uRev0 = r0 + (nums[u]^k) - nums[u];long uRev1 = r1 - (nums[u]^k) + nums[u];long vRev0 = dp[v][0] + (nums[v]^k) - nums[v];long vRev1 = dp[v][1] - (nums[v]^k) + nums[v];long x0 = Math.max(r0 + Math.max(dp[v][0], dp[v][1]),Math.max(uRev1 + vRev1, uRev1 + vRev0));long x1 = Math.max(r1 + Math.max(dp[v][1], dp[v][0]),Math.max(uRev0 + vRev0, uRev0 + vRev1));r0 = x0;r1 = x1;}dp[u][0] = r0;dp[u][1] = r1;}public long maximumValueSum(int[] nums, int k, int[][] edges) {int n = nums.length;this.g = new List[n];this.nums = nums;this.k = k;this.dp = new long[n][2];Arrays.setAll(g, x -> new ArrayList<>());for (int[] e: edges) {g[e[0]].add(e[1]);g[e[1]].add(e[0]);}dfs(0, -1);return Math.max(dp[0][0], dp[0][1]);}
}
class Solution:def maximumValueSum(self, nums: List[int], k: int, edges: List[List[int]]) -> int:n = len(nums)g = [[] for _ in range(n)]for e in edges:g[e[0]].append(e[1])g[e[1]].append(e[0])dp = [[0] * 2 for _ in range(n)]def dfs(u, fa):r0, r1 = nums[u], -0x3f3f3f3f3ffor v in g[u]:if v == fa:continuedfs(v, u)uRev0 = r0 + (nums[u]^k) - nums[u];uRev1 = r1 - (nums[u]^k) + nums[u];vRev0 = dp[v][0] + (nums[v]^k) - nums[v];vRev1 = dp[v][1] - (nums[v]^k) + nums[v];t0 = max(r0 + max(dp[v][0], dp[v][1]), max(uRev1 + vRev0, uRev1 + vRev1))t1 = max(r1 + max(dp[v][0], dp[v][1]), max(uRev0 + vRev0, uRev0 + vRev1))r0, r1 = t0, t1dp[u][0], dp[u][1] = r0, r1dfs(0, -1)return max(dp[0][0], dp[0][1])
由于异或的特点,所以这题可以抛弃边的束缚。
任意两点 u , v ,可以简单构造一条路径,只有端点 ( u , v ) 出现 1 次,其他点都出现 2 次 任意两点u,v,可以简单构造一条路径,只有端点(u,v)出现1次,其他点都出现2次 任意两点u,v,可以简单构造一条路径,只有端点(u,v)出现1次,其他点都出现2次
异或涉及边的两点,因此异或的点必然是偶数个,这是唯一的限制.
class Solution {public long maximumValueSum(int[] nums, int k, int[][] edges) {long sum = 0;PriorityQueue<Long> pq = new PriorityQueue<>(Comparator.comparing(x -> -x));for (int v: nums) {pq.offer((long)(v ^ k) - v);sum += v;}while (pq.size() >= 2) {long t1 = pq.poll();long t2 = pq.poll();if (t1 + t2 > 0) {sum += t1 + t2;} else {break;}}return sum;}
}
class Solution:def maximumValueSum(self, nums: List[int], k: int, edges: List[List[int]]) -> int:s = sum(nums)arr = [(v ^ k) - v for v in nums]arr.sort(key=lambda x: -x)n = len(nums)for i in range(0, n, 2):if i + 1 < n and arr[i] + arr[i + 1] > 0:s += arr[i] + arr[i + 1]return s
写在最后

相关文章:
力扣 第 125 场双周赛 解题报告 | 珂学家 | 树形DP + 组合数学
前言 整体评价 T4感觉有简单的方法,无奈树形DP一条路上走到黑了,这场还是有难度的。 T1. 超过阈值的最少操作数 I 思路: 模拟 class Solution {public int minOperations(int[] nums, int k) {return (int)Arrays.stream(nums).filter(x -> x <…...
基于springboot+vue的人格障碍诊断系统
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 主要内容:毕业设计(Javaweb项目|小程序|Pyt…...
Go-知识struct
Go-知识struct 1. struct 的定义1.1 定义字段1.2 定义方法 2. struct的复用3. 方法受体4. 字段标签4.1 Tag是Struct的一部分4.2 Tag 的约定4.3 Tag 的获取 githupio地址:https://a18792721831.github.io/ 1. struct 的定义 Go 语言的struct与Java中的class类似&am…...
SpringMVC 学习(十一)之数据校验
目录 1 数据校验介绍 2 普通校验 3 分组校验 4 参考文档 1 数据校验介绍 在实际的项目中,一般会有两种校验数据的方式:客户端校验和服务端校验 客户端校验:这种校验一般是在前端页面使用 JS 代码进行校验,主要是验证输入数据…...
软考55-上午题-【数据库】-数据库设计步骤1
一、数据库设计的步骤 新奥尔良法,四个主要阶段: 1、用户需求分析:手机用户需求,确定系统边界; 2、概念设计(概念结构设计):是抽象概念模型,较理想的是采用E-R方法。 …...
速盾:使用cdn后速度慢是怎么回事?
CDN(内容分发网络)是一种通过将网站的静态内容分布到全球各地的服务器,从而提供更快速度和更好用户体验的技术。然而,有时候用户会遇到使用CDN后速度变慢的问题,下面将探讨几种可能的原因。 服务器选择错误: CDN服务通…...
考研复试类比社团招新,无所谓“公平”,导师选谁都是他的权力
这篇文章是抖音和b站上上传的同名视频的原文稿件,感兴趣的csdn用户可以关注我的抖音和b站账号(GeekPower极客力量)。同时这篇文章也为视频观众提供方便,可以更加冷静地分析和思考。文章同时在知乎发表。 我考研一战的时候计算机考…...
阿里面试,有点焦虑。。
恭喜发现宝藏!搜索公众号【TechGuide】回复公司名,解锁更多新鲜好文和互联网大厂的笔经面经,目前已更新至美团、字节… 作者TechGuide【全网同名】 聊聊春招 春招来了,有些24届校招生可能还在做最后的努力,有些25届的…...
24计算机考研调剂 | 石家庄铁道大学
01石家庄铁道大学 智慧交通研究室招少量调剂学术型硕士(数一英一320分以上工科专业) 考研调剂招生信息 学校:石家庄铁道大学 专业:工学->计算机科学与技术->计算机应用技术 工学->测绘科学与技术->地图制图学与地理信息工程 工学->交…...
勇敢尝鲜之Springboot3大坑-集成Mybatisplus报错:ddlApplicationRunner
🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄 🌹简历模板、学习资料、面试题库、技术互助 🌹文末获取联系方式 📝 往期热门专栏回顾 专栏…...
linux高级编程:线程(二)、进程间的通信方式
线程: 回顾线程(一): 1.线程间通信问题 线程间共享同一个资源(临界资源) 互斥: 排他性访问 linux系统 -- 提供了Posix标准的函数库 -- 互斥量(互斥锁) 原子操作&#x…...
Unity 佳能SDK 及数据获取
1. 填写信息跟官方申请SDK,大概1-2个工作日会邮件回复你 佳能(中国)- 佳定制(佳能影像产品),SDK,EDSDK,CCAPI,软件开发包下载 2. 将SDK这两个文件放到 Unity Plugins文件夹 3. 把CameraControl 下面只要是绿色的 .cs 文件都复制到Unity 中...
Unity(第二十三部)导航
你可以使用 unity官方提供的 unity导航组件或第三方 unity导航组件,以实现游戏中角色或其他物体的导航。 unity导航组件通常具有多种导航模式,如飞行模式、步行模式、车辆模式等,可以根据不同的需求选择合适的模式。同时,unity导…...
根据建表sql语句生成go的struct代码工具
sql2struct 一个根据"CREATE TABLE"建表语句生成对应的Go语言结构体的工具,暂只支持 MySQL 表。 开发目的 在 github 中找到一些 sql2struct,但要么是 chrome 插件,要么是在线工具,要么是需要连接 MySQL,…...
Qt 自定义长条进度条(类似播放器进度条)
1.运行界面 2.步骤 其实很简单。 2.1绘制底图圆角矩形 2.2绘制播放进度圆角矩形 参考:painter绘图 3.源码 #pragma once#include <QWidget> #include <QLabel> #include <QHBoxLayout> #include <QMouseEvent> #include <QDebug&g…...
休息日的思考与额外题——双指针、原地哈希day28
文章目录 前言一、11. 盛最多水的容器二、41. 缺失的第一个正数三、42. 接雨水总结 前言 一个本硕双非的小菜鸡,备战24年秋招,计划二刷完卡子哥的刷题计划,加油! 二刷决定精刷了,于是参加了卡子哥的刷题班,…...
数据修改
Oracle 目录 数据修改 将员工编号的 7369 的员工工资修改为 810,佣金改为 100 将工资最低的员工工资修改为公司的平均工资 将所有在 1981 年雇佣的员工的雇佣日期修改为今天,工资增长 20% 数据的更新操作 Oracle从入门到总裁:https://blog.csdn.n…...
Android JNI复杂用法,回调,C++中调用Java方法
Android JNI复杂用法,回调,C中调用Java方法 一、前言 Android JNI的 普通用法估计很多人都会,但是C中调用Java方法很多人不熟悉,并且网上很多介绍都是片段的。 虽然C/C调用Java不常用,但是掌握多一点还是有好处的。…...
C++从零开始的打怪升级之路(day41)
这是关于一个普通双非本科大一学生的C的学习记录贴 在此前,我学了一点点C语言还有简单的数据结构,如果有小伙伴想和我一起学习的,可以私信我交流分享学习资料 那么开启正题 今天分享的是关于继承的知识点 1.派生类的默认成员函数 首先我…...
uni-app app实现web-view H5图片长按下载
问题和使用场景描述: uniapp app web-view中图片无法长按保存,IOS下是正常的,但是Android下长按无反应 解决方案: 下载mui.min.js,放到项目中的static下(下载见最上面的压缩包) 在static目录下新建script.js mui.…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
数据库——redis
一、Redis 介绍 1. 概述 Redis(Remote Dictionary Server)是一个开源的、高性能的内存键值数据库系统,具有以下核心特点: 内存存储架构:数据主要存储在内存中,提供微秒级的读写响应 多数据结构支持&…...
