从0开始学习NEON(1)
1、前言
在上个博客中对NEON有了基础的了解,本文将针对一个图像下采样的例子对NEON进行学习。
学习链接:CPU优化技术 - NEON 开发进阶
上文链接:https://blog.csdn.net/weixin_42108183/article/details/136412104
2、第一个例子
现在有一张图片,需要对UV通道的数据进行下采样,对于同种类型的数据,相邻的4个元素求和并求均值。示意图如下图所示:

假定图像数据的宽为16的整数倍,如果使用c++代码,可以写出下面的代码:
void DownscaleUv(uint8_t *src, uint8_t *dst, int32_t src_stride, int32_t dst_width, int32_t dst_height, int32_t dst_stride)
{//遍历每一行的数据for (int32_t j = 0; j < dst_height; j++){ // 偶数行起始位置,uint8_t *src_ptr0 = src + src_stride * j * 2;// 奇数行起始位置uint8_t *src_ptr1 = src_ptr0 + src_stride;// 存储起始位置uint8_t *dst_ptr = dst + dst_stride * j;// 没一次循环计算没for (int32_t i = 0; i < dst_width; i += 2){// U通道 (u1 + u2 + u3 + u4) / 4dst_ptr[i] = (src_ptr0[i * 2] + src_ptr0[i * 2 + 2] +src_ptr1[i * 2] + src_ptr1[i * 2 + 2]) / 4;// V通道 (v1 + v2 + v3 + v4) / 4dst_ptr[i + 1] = (src_ptr0[i * 2 + 1] + src_ptr0[i * 2 + 3] +src_ptr1[i * 2 + 1] + src_ptr1[i * 2 + 3]) / 4;}}
}
通过学习向量化编程,我们可知,数据的计算可以利用单指令多数据的方式进行加速,例如上面的例子中的内层循环,下面就使用NEON来试试吧。
3、第2个例子
为了进行向量化加速,首先需要将UV数据分离,将UV数据分离的操作在NEON中很容易进行, 使用vld2交织加载或者储存即可。对于每一行的数据,交织加载的示意图如下。

交织加载的基本原理是按照间隔挑选数据。交织加载的例子如下所示:
void DownscaleUvNeon()
{vector<uint8_t> data; // UVUVUVUVUV...for(int i=0;i<32;i++){data.push_back(i);}// uint8_t *src_ptr0 = (uint8_t *)data.data(); // load 第一行的数据uint8x16x2_t src;src = vld2q_u8(src_ptr0); // 交织读取 16 * 2 的数据,需要两个q寄存器。auto a = src_odd.val[0]; // 一行的U数据vector<uint8_t> show_data(16);vst1q_u8 (show_data.data(),a); // 将U数据顺序储存到内存中// 打印for(auto n : show_data){cout << static_cast<int>(n) << endl; // 0,2,4,6,...}
}
4、第3个例子
对于下UV数据采样来说,在偶数行进行上面的交织加载,再在奇数行上进行同样的操作。奇数行和偶数行相应的数据进行相加再求平均,即可得到最后的结果。代码实现如下:
#include <arm_neon.h>
void DownscaleUvNeon(uint8_t *src, uint8_t *dst, int32_t src_width, int32_t src_stride, int32_t dst_width, int32_t dst_height, int32_t dst_stride)
{//用于加载偶数行的源数据,2组每组16个u8类型数据,(16 * 8) * 2 = 128 * 128, 因此需要两个q寄存器。 uint8x16x2_t v8_src0;//用于加载奇数行的源数据uint8x16x2_t v8_src1;//目的数据变量,需要一个Q寄存器uint8x8x2_t v8_dst;//目前只处理16整数倍部分的结果int32_t dst_width_align = dst_width & (-16); // dst_width & (-16),最大能够整除16的数。//向量化剩余的部分需要单独处理int32_t remain = dst_width & 15;int32_t i = 0;//外层高度循环,逐行处理for (int32_t j = 0; j < dst_height; j++){//偶数行源数据地址uint8_t *src_ptr0 = src + src_stride * j * 2;//奇数行源数据地址uint8_t *src_ptr1 = src_ptr0 + src_stride;//目的数据指针uint8_t *dst_ptr = dst + dst_stride * j;//内层循环,一次16个u8结果输出for (i = 0; i < dst_width_align; i += 16){//提取数据,进行UV分离v8_src0 = vld2q_u8(src_ptr0); src_ptr0 += 32; // 偶数行进入下一个stridev8_src1 = vld2q_u8(src_ptr1);src_ptr1 += 32; // 奇数行行进入下一个stride//水平两个数据相加uint16x8_t v16_u_sum0 = vpaddlq_u8(v8_src0.val[0]);uint16x8_t v16_v_sum0 = vpaddlq_u8(v8_src0.val[1]);uint16x8_t v16_u_sum1 = vpaddlq_u8(v8_src1.val[0]);uint16x8_t v16_v_sum1 = vpaddlq_u8(v8_src1.val[1]);//上下两个数据相加,之后求均值v8_dst.val[0] = vshrn_n_u16(vaddq_u16(v16_u_sum0, v16_u_sum1), 2);v8_dst.val[1] = vshrn_n_u16(vaddq_u16(v16_v_sum0, v16_v_sum1), 2);//UV通道结果交织存储vst2_u8(dst_ptr, v8_dst);dst_ptr += 16;}//process leftovers......}
}
5、第4个例子
当图像的宽度不是16的整数倍,需要考虑结尾数据处理,按照链接里面的例子,可以分为以下几种。
1、 padding
也就是将数据补齐到想要的长度,如下图所示,比如我这里需要操作 uint8x8_t的数据,但是我的数据长度只有5,可以将数据的长度填充至8。

2、Overlap
也就是重复利用其中的某些数据,在不填充其他数据的情况下进行,如下图所示,当需要利用uint8x4_t来对下面的数据进行计算时,可以先将04加载到寄存器上,再将36加载到寄存器上操作。

常用第二种方法对结尾数据进行处理,那么图像下采样的数据代码可以写成:
#include <arm_neon.h>void DownscaleUvNeon(uint8_t *src, uint8_t *dst, int32_t src_width, int32_t src_stride, int32_t dst_width, int32_t dst_height, int32_t dst_stride)
{uint8x16x2_t v8_src0;uint8x16x2_t v8_src1;uint8x8x2_t v8_dst;int32_t dst_width_align = dst_width & (-16); // 最大能够整除16的数。int32_t remain = dst_width & 15; // 需要剩余处理的数据长度int32_t i = 0;for (int32_t j = 0; j < dst_height; j++){uint8_t *src_ptr0 = src + src_stride * j * 2;uint8_t *src_ptr1 = src_ptr0 + src_stride;uint8_t *dst_ptr = dst + dst_stride * j;// 处理完宽度为16的整数倍数据了for (i = 0; i < dst_width_align; i += 16){v8_src0 = vld2q_u8(src_ptr0);src_ptr0 += 32;v8_src1 = vld2q_u8(src_ptr1);src_ptr1 += 32;uint16x8_t v16_u_sum0 = vpaddlq_u8(v8_src0.val[0]);uint16x8_t v16_v_sum0 = vpaddlq_u8(v8_src0.val[1]);uint16x8_t v16_u_sum1 = vpaddlq_u8(v8_src1.val[0]);uint16x8_t v16_v_sum1 = vpaddlq_u8(v8_src1.val[1]);v8_dst.val[0] = vshrn_n_u16(vaddq_u16(v16_u_sum0, v16_u_sum1), 2);v8_dst.val[1] = vshrn_n_u16(vaddq_u16(v16_v_sum0, v16_v_sum1), 2);vst2_u8(dst_ptr, v8_dst);dst_ptr += 16;}// process leftover// remain 剩余需要处理的数据长度if (remain > 0){// 从后往前回退一次向量计算需要的数据长度// 有部分数据是之前处理过的,这部分的数据在这里重复计算一次src_ptr0 = src + src_stride * (j * 2) + src_width - 32; src_ptr1 = src_ptr0 + src_stride;dst_ptr = dst + dst_stride * j + dst_width - 16;v8_src0 = vld2q_u8(src_ptr0);v8_src1 = vld2q_u8(src_ptr1);uint16x8_t v16_u_sum0 = vpaddlq_u8(v8_src0.val[0]);uint16x8_t v16_v_sum0 = vpaddlq_u8(v8_src0.val[1]);uint16x8_t v16_u_sum1 = vpaddlq_u8(v8_src1.val[0]);uint16x8_t v16_v_sum1 = vpaddlq_u8(v8_src1.val[1]);v8_dst.val[0] = vshrn_n_u16(vaddq_u16(v16_u_sum0, v16_u_sum1), 2);v8_dst.val[1] = vshrn_n_u16(vaddq_u16(v16_v_sum0, v16_v_sum1), 2);vst2_u8(dst_ptr, v8_dst);}}
}
3、 single
将剩余的元素单独处理,就是将剩余的元素利用NEON的只加载一个元素的功能,不推荐使用,因为这里又可能for循环多次。
4、将剩余的元素当作标量处理
也就是将剩下的元素直接使用c语言编程的方式进行计算。
void DownscaleUvNeonScalar(uint8_t *src, uint8_t *dst, int32_t src_width, int32_t src_stride, int32_t dst_width, int32_t dst_height, int32_t dst_stride)
{uint8x16x2_t v8_src0;uint8x16x2_t v8_src1;uint8x8x2_t v8_dst;int32_t dst_width_align = dst_width & (-16);int32_t remain = dst_width & 15;int32_t i = 0;for (int32_t j = 0; j < dst_height; j++){uint8_t *src_ptr0 = src + src_stride * j * 2;uint8_t *src_ptr1 = src_ptr0 + src_stride;uint8_t *dst_ptr = dst + dst_stride * j;for (i = 0; i < dst_width_align; i += 16) // 16 items output at one time{v8_src0 = vld2q_u8(src_ptr0);src_ptr0 += 32;v8_src1 = vld2q_u8(src_ptr1);src_ptr1 += 32;uint16x8_t v16_u_sum0 = vpaddlq_u8(v8_src0.val[0]);uint16x8_t v16_v_sum0 = vpaddlq_u8(v8_src0.val[1]);uint16x8_t v16_u_sum1 = vpaddlq_u8(v8_src1.val[0]);uint16x8_t v16_v_sum1 = vpaddlq_u8(v8_src1.val[1]);v8_dst.val[0] = vshrn_n_u16(vaddq_u16(v16_u_sum0, v16_u_sum1), 2);v8_dst.val[1] = vshrn_n_u16(vaddq_u16(v16_v_sum0, v16_v_sum1), 2);vst2_u8(dst_ptr, v8_dst);dst_ptr += 16;}//process leftoversrc_ptr0 = src + src_stride * j * 2;src_ptr1 = src_ptr0 + src_stride;dst_ptr = dst + dst_stride * j;for (int32_t i = dst_width_align; i < dst_width; i += 2){dst_ptr[i] = (src_ptr0[i * 2] + src_ptr0[i * 2 + 2] +src_ptr1[i * 2] + src_ptr1[i * 2 + 2]) / 4;dst_ptr[i + 1] = (src_ptr0[i * 2 + 1] + src_ptr0[i * 2 + 3] +src_ptr1[i * 2 + 1] + src_ptr1[i * 2 + 3]) / 4;}}
}
6、总结
本次学习中通过一个下采样的例子学习的NEON编程过程中的优势以及将要面临的问题,主要是剩余数据处理的方式,后面将继续深入学习。
/ 4;
dst_ptr[i + 1] = (src_ptr0[i * 2 + 1] + src_ptr0[i * 2 + 3] +src_ptr1[i * 2 + 1] + src_ptr1[i * 2 + 3]) / 4;}
}
}
#### 6、总结本次学习中通过一个下采样的例子学习的NEON编程过程中的优势以及将要面临的问题,主要是剩余数据处理的方式,后面将继续深入学习。
相关文章:
从0开始学习NEON(1)
1、前言 在上个博客中对NEON有了基础的了解,本文将针对一个图像下采样的例子对NEON进行学习。 学习链接:CPU优化技术 - NEON 开发进阶 上文链接:https://blog.csdn.net/weixin_42108183/article/details/136412104 2、第一个例子 现在有一张图片,需…...
(二十三)Flask之高频面试点
目录: 每篇前言:Q1:为什么把request和session放在一起?Q2:Local对象的作用?Q3::LocalStack对象的作用?Q4:一个运行中的Flask应用程序分别包括几个Local/LocalStack&#…...
设计模式(十三)抽象工厂模式
请直接看原文:设计模式(十三)抽象工厂模式_抽象工厂模式告诉我们,要针对接口而不是实现进行设计。( )-CSDN博客 -------------------------------------------------------------------------------------------------------------------------------- …...
HTTP Cookie 你了解多少?
Cookie是什么? 先给大家举个例子,F12 打开浏览器的页面之后,我们能在 Response Headers 的字段里面看到一个header 叫做 Set-Cookie,如下所示 图中包含的 Set-Cookie 为 Set-Cookie:uuid_tt_dd10_20293537580-1709432565344-232…...
【QT+QGIS跨平台编译】之五十六:【QGIS_CORE跨平台编译】—【qgsmeshcalclexer.cpp生成】
文章目录 一、Flex二、生成来源三、构建过程一、Flex Flex (fast lexical analyser generator) 是 Lex 的另一个替代品。它经常和自由软件 Bison 语法分析器生成器 一起使用。Flex 最初由 Vern Paxson 于 1987 年用 C 语言写成。 “flex 是一个生成扫描器的工具,能够识别文本中…...
ar时间序列
AR时间序列模型(AutoRegressive Time Series Model)是一种用于分析和预测时间序列数据的统计模型。该模型假设未来的观测值与过去的观测值相关,且该相关性可以通过线性回归来描述。 AR模型的基本思想是将当前时刻的观测值表示为过去几个时刻的…...
Android 14 AAOS audio
文章目录 乘客音频投放到主音频区动态路由配置controlhal实现的具体流程control hal AudioGain的callbackAudioModuleChange变化的通知 乘客音频投放到主音频区 场景: 是将乘客区的Media 属性的数据通过主屏区的设备进行播放。具体而言 在副屏user11播放的音乐是输出…...
文心一言 VS 讯飞星火 VS chatgpt (207)-- 算法导论15.4 4题
四、说明如何只使用表 c 中 2*min(m,n) 个表项及O(1)的额外空间来计算LCS的长度。然后说明如何只用 min(m,n) 个表项及O(1)的额外空间完成相同的工作。要写代码的时候,请用go语言。 文心一言: 在只使用 2 * min(m, n) 个表项和 …...
【论文笔记】Attention Is All You Need
【论文笔记】Attention Is All You Need 文章目录 【论文笔记】Attention Is All You NeedAbstract1 Introduction2 Background补充知识:软注意力 soft attention 和硬注意力 hard attention?补充知识:加法注意力机制和点乘注意力机制Extende…...
(亲测可用)Adobe Photoshop 2024下载与安装
背景介绍:Adobe Photoshop 2024 是全球最受欢迎的图像编辑软件之一,2024年的版本带来了一系列令人印象深刻的功能: AI增强的自动选择和蒙版工具:现在,用户可以更轻松地选择和处理复杂的图像元素。更多的3D渲染功能&…...
uniapp聊天记录本地存储(详细易懂)
目录 目录 1、通过websocket拿取数据 2、获取聊天数据 3、聊天信息存储 、更新 4、读取聊天记录 5、发送信息,信息获取 6、最终效果 1.聊天信息的存储格式 2、样式效果 写聊天项目,使用到了本地存储。需要把聊天信息保存在本地,实时获…...
Vue.js中的$nextTick
其实目前在我现有的开发经历中,我还没有实际运用过$nextTick,今天在看书时,学习到了这个东西,所以做个笔记记录一下。 一、$nextTick是什么? $nextTick 是 Vue提供的一个方法,用于在 DOM 更新之后执行回调…...
python+mysql咖啡店推荐系统django+vue
(1).研究的基本内容 系统的角色分为: 1.管理员 2.会员 3.非会员 角色不同,权限也不相同 技术栈 后端:python 前端:vue.jselementui 框架:django/flask Python版本:python3.7 数据库:mysql5.7…...
综合实验nginx+nfs+kpa
综合实验 实验目的: 静态资源和动态资源分别存放在远端存储NFS上,NFS上数据实现实时备份,用户通过负载访问后端的web服务。实现ngixn负载高可用,当keepalived master宕机,vip能自动跳转到备用节点 实验环境ÿ…...
springboot197基于springboot的毕业设计系统的开发
简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的毕业设计系统的开发 适用于计算机类毕业设计,课程设计参考与学习用途。仅供学习参考, 不得用于商业或者非法用途,否则,一切后果请用户自负。 看运行截图看 第五章 第四章 …...
group by报错
# 报错:[42000][1055] Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column base.biz_org_rep.ID which is not functionally dependent on columns in GROUP BY clause; this is incompatible with sql_modeonly_full_grou…...
3、云原生安全之falco的部署
文章目录 1、helm安装2、拉去镜像失败与解决3、安装faclo4、安装nfs服务器,配置k8s的持久卷4.1、创建nfs服务器,4.2、部署master节点(nsf服务的客户端)4.3、pv与pvc4.4、假设pv和pvc的配置文件出错了5、安装falcosidekick可视化(建议跳过,直接使用6)6、安装faclo与falco…...
Docker架构概述
Docker是基于Go语言实现的开源容器项目,能够把开发的应用程序自动部署到容器的开源的应用容器引擎。Docker的构想是要实现"Build, Ship and Run Any App, Anywhere",即通过对应用的封装(Packaging)、分发(Distribution)、部署(Deployment)、运…...
安装 node 错误的配置环境变量之后使用 npm 报错
安装 node 错误的配置环境变量之后使用 npm 报错 node:internal/modules/cjs/loader:1147 throw err; ^ Error: Cannot find module ‘F:\ACodeTools\Node\node_modules\npm\bin\node_modules\npm\bin\npm-cli.js’ at Module._resolveFilename (node:internal/modules/cjs/loa…...
Matlab 最小二乘插值(曲线拟合)
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 在多项式插值时,当数据点个数较多时,插值会导致多项式曲线阶数过高,带来不稳定因素。因此我们可以通过固定幂基函数的最高次数 m(m < n),来对我们要拟合的曲线进行降阶。之前的函数形式就可以变为: 二、实现…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
