当前位置: 首页 > news >正文

2.1基本算法之枚举7647:余数相同问题

已知三个正整数 a,b,c。

现有一个大于1的整数x,将其作为除数分别除a,b,c,得到的余数相同。

请问满足上述条件的x的最小值是多少?

数据保证x有解

#include<bits/stdc++.h>//万能头
using namespace std;//不用说
int main(){
    int a,b,c;//a,b,c是三个被除数
    cin>>a>>b>>c;//输入
    for(int i=2;i<=1000000;i++){//注意:这里是大于一,不是大于等于一,所以只能是二
        if(a%i==b%i&&a%i==c%i&&b%i==c%i){//判断余数是否相等
            cout<<i;//相等的话输出,并结束循环,否则继续循环
            return 0;//结束 
        }
    }
}

讲个笑话(可能不太好笑)(网上找的)

“我喝酒的时候,每个人都可以喝酒!”酒店里有个人在招呼大家进去。他喝干了杯子里的威士忌,又喊道:“我要再来一杯。每个人也可以再来一杯。”于是大家伙怀着感激的心情又干了一杯。那人喝下第二杯酒,从兜里掏出2美元钞票啪一声放到柜台上。“我付帐的时候,”他吼道,“每个人也该付帐了!”

再说几句:

1.大家不要当键盘侠,谢谢!!!

相关文章:

2.1基本算法之枚举7647:余数相同问题

已知三个正整数 a&#xff0c;b&#xff0c;c。 现有一个大于1的整数x&#xff0c;将其作为除数分别除a&#xff0c;b&#xff0c;c&#xff0c;得到的余数相同。 请问满足上述条件的x的最小值是多少&#xff1f; 数据保证x有解 #include<bits/stdc.h>//万能头 using…...

求最短路径之迪杰斯特拉算法

对fill用法的介绍 1.用邻接矩阵实现 const int maxn100; const int INF100000000;//无穷大&#xff0c;用来初始化边 int G[maxn][maxn];//用邻接矩阵存储图的信息 int isin[maxn]{false};//记录是否已被访问 int minDis[maxn];//记录到顶点的最小距离void Dijkstra(int s,in…...

python大学社团管理系统开发文档

项目介绍 一直想做一款大学社团管理系统&#xff0c;看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间开始自己写了一套管理系统。 在线体验 代码下载&#xff1a;https://github.com/geeeeeeeek/python_team演示地址&#xff1a;http://team.gitapp.cn/ &…...

leetcode 1328.破坏回文串

题目链接LeetCode1328 1.题目 给你一个由小写英文字母组成的回文字符串 palindrome &#xff0c;请你将其中 一个 字符用任意小写英文字母替换&#xff0c;使得结果字符串的 字典序最小 &#xff0c;且 不是 回文串。 请你返回结果字符串。如果无法做到&#xff0c;则返回一个…...

重学SpringBoot3-自动配置机制

重学SpringBoot3-自动配置机制 引言Spring Boot 自动配置原理示例&#xff1a;Spring Boot Web 自动配置深入理解总结相关阅读 引言 Spring Boot 的自动配置是其最强大的特性之一&#xff0c;它允许开发者通过最少的配置实现应用程序的快速开发和部署。这一切都得益于 Spring …...

sql基本语法+实验实践

sql语法 注释&#xff1a; 单行 --注释内容# 注释内容多行 /* 注释内容 */数据定义语言DDL 查询所有数据库 show databases;注意是databases而不是database。 查询当前数据库 select database();创建数据库 create database [if not exists] 数据库名 [default charset 字符…...

Node.js中的并发和多线程处理

在Node.js中&#xff0c;处理并发和多线程是一个非常重要的话题。由于Node.js是单线程的&#xff0c;这意味着它在任何给定时间内只能执行一个任务。然而&#xff0c;Node.js的事件驱动和非阻塞I/O模型使得处理并发和多线程变得更加高效和简单。在本文中&#xff0c;我们将探讨…...

node.js 封装分页查询

node.js封装sql分页查询 方法&#xff1a; /*** 生成分页查询sql* param {string} table 表名* param {number} pageNum 分页页数 * param {number} pageSize 分页条数 * param {object} query 查询对象 例&#xff1a;{id:1,name:小明}* returns sql语句*/ const limit (ta…...

iptables 基本使用

iptables 主要用到两个表&#xff1a;filter 和 nat&#xff0c;其中 filter 表可以用来过滤数据包&#xff1b;nat 可以用来修改数据包的源地址和目的地址。 chain chain 是 table 中对数据包进行匹配的规则&#xff0c;对于 filter 来说 chain 有 INPUT & OUTPUT & …...

食品笔记()

吃东西有时不注意&#xff0c;就容易不舒服&#xff0c;记录下。 辣椒 辣椒真是个让人又爱又恨的东西。 看着想吃&#xff0c;吃着过瘾&#xff0c;吃完容易肚子疼。 主要是这东西本身就会刺激身体&#xff0c;即使是能吃辣的人&#xff0c;也容易造成肠胃发炎。 适量吃些即…...

C++入门和基础

目录 文章目录 前言 一、C关键字 二、命名空间 2.1 命名空间的定义 2.2 命名空间的使用 2.3 标准命名空间 三、C输入&输出 四、缺省参数 4.1 缺省参数的概念 4.2 缺省参数的分类 五、函数重载 5.1 函数重载的简介 5.2 函数重载的分类 六、引用 6.1 引用的…...

一些C语言知识

C语言的内置类型&#xff1a; char short int long float double C99中引入了bool类型&#xff0c;用来表示真假的变量类型&#xff0c;包含true&#xff0c;false。 这个代码的执行结果是什么&#xff1f;好好想想哦&#xff0c;坑挺多的。 #include <stdio.h>int mai…...

代码工具APEX的入门使用(未包含安装)

第一次使用APEX是2019年&#xff0c;这个技术成名已久只是我了解的比较晚。请看Oracle ACE的网站&#xff0c;这就是用APEX做的。实际上有一次我看O记的人操作他们的办公流程&#xff0c;都是用APEX做的。 那一年&#xff0c;我用APEX做了一个CMDB的管理系统。那时候还没有流行…...

负载均衡.

简介: 将请求/数据【均匀】分摊到多个操作单元上执行&#xff0c;负载均衡的关键在于【均匀】。 负载均衡的分类: 网络通信分类 四层负载均衡:基于 IP 地址和端口进行请求的转发。七层负载均衡:根据访问用户的 HTTP 请求头、URL 信息将请求转发到特定的主机。 载体维度分类 硬…...

Git 指令深入浅出【2】—— 分支管理

Git 指令深入浅出【2】—— 分支管理 分支管理1. 常用分支管理指令2. 合并分支合并冲突合并模式 3. 实战演习 分支管理 1. 常用分支管理指令 # 查看本地分支 git branch# 查看远程分支 git branch -r# 查看全部分支 git branch -aHEAD 指向的才是当前的工作分支 # 查看当前分…...

工作流/任务卸载相关开源论文分享

decima-sim 概述&#xff1a; 图神经网络强化学习处理多工作流 用的spark的仿真环境&#xff0c;mit的论文&#xff0c;价值很高&#xff0c;高被引&#xff1a;663仓库地址&#xff1a;https://github.com/hongzimao/decima-sim论文&#xff1a;https://web.mit.edu/decima/co…...

为什么要用Python?

为什么要用Python&#xff1f; Python简单易用&#xff1a;提供大量的简单易用数据结构和内置库&#xff0c;语法结构也很简单易读&#xff0c;不需要使用括号来进行代码块分组&#xff0c;也不需要预声明变量或参数。Python开发效率高&#xff1a;简单易用的前提下&#xff0…...

北京大学发布,将试错引入大模型代理学习!

引言&#xff1a;探索语言智能的新边界 在人工智能的发展历程中&#xff0c;语言智能始终是一个核心的研究领域。随着大语言模型&#xff08;LLM&#xff09;的兴起&#xff0c;我们对语言智能的理解和应用已经迈入了一个新的阶段。这些模型不仅能够理解和生成自然语言&#x…...

Java 设计模式

编程设计模式六大原则 开闭原则&#xff08;Open Close Principle&#xff09;&#xff1a;对扩展开放&#xff0c;对修改关闭。在程序需要进行拓展的时候&#xff0c;不能去修改原有的代码&#xff0c;实现一个热插拔的效果。简言之&#xff0c;是为了使程序的扩展性好&#…...

Kivy和BeeWare 开发APP的优缺点,及其发展历史

Kivy和BeeWare都是流行的Python框架&#xff0c;用于开发移动应用。它们各自有独特的特点和优势&#xff0c;同时也面临一些挑战和限制。下面是对这两个框架的开发优缺点及其发展历史的总结。 Kivy 发展历史 起源&#xff1a;Kivy诞生于2010年&#xff0c;旨在提供一个用于P…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...