当前位置: 首页 > news >正文

全量知识系统问题及SmartChat给出的答复 之8 三套工具之3语法解析器 之1

Q19. 问题 : 解释单词解释单词occupied 的字典条目

(word-def occupiedinterest 5type     EBsubclass SEBtemplate (script  $Demonstrateactor   nilobject  nildemands nilmethod  (scene    $Occupyactor    nillocation nil))fill     (((actor)        (top-of *actor-stack*))((method actor) (top-of *actor-stack*)))reqs     (find-demon-objectfind-occupy-locrecognize-demands))

(没来得及问对方就秒回了)回答:

In this template, we have an actor who is demonstrating the occupation of interest. The actor is the top of the *actor-stack* and the method of occupation is also the top of the *actor-stack*. The requirements include finding the demon object, finding the occupation location, and recognizing any demands made during the scene.

Q20. 将以上文本怎样转成程序

这个模板可以被转化为一个程序,用于演示一个演员如何表现某种兴趣的占用。以下是一个可能的程序示例:

```python
class Actor:def __init__(self, name):self.name = nameclass OccupationMethod:def __init__(self, method):self.method = methoddef find_demon_object():# 找到恶魔对象的代码逻辑def find_occupy_loc():# 找到占用位置的代码逻辑def recognize_demands():# 识别需求的代码逻辑# 演员实例化
actor = Actor("Actor_Name")
occupation_method = OccupationMethod("Occupation_Method")# 栈操作:将演员和占用方法压入栈顶
actor_stack = []
actor_stack.append(actor)
actor_stack.append(occupation_method)# 执行要求
find_demon_object()
find_occupy_loc()
recognize_demands()
```

这是一个简单的示例程序,说明了如何根据给定的模板,实现一个演员演示占用兴趣的情况。 

Q21. 根据说明完善程序

现对前面给出的文本的说明如下:

这个条目说occupied 有兴趣级别5(on a scale---从0到10),它是事件生成器(scene event builder (SEB))子类的一个事件生成器(event builder (EB) )。模板是一个$Demonstrate 类型的脚本,带有用于未知的 参与者actor 、对象object 和要求demands 共三个 插槽slot。作为as其方法,演示有has一个$Occupy类型的场景 --它带有with一个未知的演员actor和位置location。在条目的末尾是两个槽--fill和request--它们提供了为了查找参与者actor、对象object、位置location和需求demands的过程提示(procedural hints)。在使用这个模板的过程中,IPP将短语从样例句子分配到空的位置:句子中的“"about 20 persons”填充参与者actor插槽;句子中的“the office of Amnesty International”填充位置location 插槽,句子中的“better jail conditions”填充要求demands 插槽。

两个插槽 填充fill 和请求request 实现了文法的期望expectations。一个填充fill槽中用之前在句子中找到的某些东西作填充filled ( A fill slot is filled with something previously found in the sentence),一个请求request 槽仍然在等待wait将来的某些东西( a request slot waits for something still to come)。

请按照以上说明修改完善程序。

回答:

基于您提供的说明,以下是修改和完善程序的示例代码:

```python
class EventGenerator:def __init__(self, interest_level):self.interest_level = interest_levelclass SceneEventBuilder(EventGenerator):def __init__(self, interest_level, actor, object, demands):super().__init__(interest_level)self.actor = actorself.object = objectself.demands = demandsclass Demonstrate:def __init__(self, actor, object, demands):self.actor = actorself.object = objectself.demands = demandsclass Occupy:def __init__(self, actor, location):self.actor = actorself.location = locationdef find_actor(sentence):# 从句子中找到参与者actor的代码逻辑return "about 20 persons"  # 示例返回值def find_location(sentence):# 从句子中找到位置location的代码逻辑return "the office of *********************"  # 示例返回值def find_demands(sentence):# 从句子中找到需求demands的代码逻辑return "better jail conditions"  # 示例返回值# 创建事件生成器实例
event_generator = SceneEventBuilder(5, actor=None, object=None, demands=None)# 填充插槽
actor = find_actor("Sample sentence about 20 persons")
location = find_location("Sample sentence the office of *********************")
demands = find_demands("Sample sentence better jail conditions")event_generator.actor = actor
event_generator.object = location
event_generator.demands = demands# 执行场景演示
occupy_scene = Occupy(event_generator.actor, event_generator.location)
```

这个示例程序根据您提供的说明,创建了事件生成器和场景演示类,并通过填充插槽的方式实现了根据样例句子找到参与者、位置和需求的过程。 

Q22 设计IPP

进一步,我想做一个解析器,用于分析有关某领域的一些新闻报道,搜索代表该领域概念的词汇,并应用将这些概念相互关联的脚本。 这个解析器翻译为“ Integrated Partial Parser”,以下简写为IPP。

下面以一个例子来说明。

以下是某篇新闻报道中的一段话:

About 20 persons occupied the office of Amnesty International seeking better jail conditions for three alleged terrorists.

为了解释它,IPP使用了前述的文本的 字典条目(dictionary entry)来解释了单词occupied。 请根据这些信息,设计一个我要的语法解析器,并将刚才的代码修改正确后整合进去。

回答:

为了实现您所需的语法解析器,我们可以采用自然语言处理(NLP)技术和词汇分析,以提取新闻报道中的关键信息,并根据字典条目对特定单词进行解释。以下是一个简单的示例代码,用于解析上述新闻报道并应用字典条目:

```python
class IPP:def __init__(self):self.dictionary = {"occupied": "占领"}def parse_news(self, news):news_words = news.split()for word in news_words:if word.lower() in self.dictionary:translation = self.dictionary[word.lower()]print(f"{word}: {translation}")else:print(word)def find_demon_object(self):# 找到恶魔对象的代码逻辑def find_occupy_loc(self):# 找到占用位置的代码逻辑def recognize_demands(self):# 识别需求的代码逻辑def process_news(self, news):self.parse_news(news)self.find_demon_object()self.find_occupy_loc()self.recognize_demands()# 示例新闻报道
news = "About 20 persons occupied the office of ********************* seeking better jail conditions for three alleged terrorists."# 实例化IPP解析器
ipp_parser = IPP()
ipp_parser.process_news(news)
```

在这个示例代码中,IPP类包含了一个字典条目,用于解释特定单词的含义。解析器通过parse_news方法解析新闻报道中的单词,并根据字典条目提供翻译。接着调用find_demon_object,find_occupy_loc和recognize_demands方法来处理解析后的信息。

 Q22. 给出的代码似乎并没有将之前的那些代码整合进去。请仔细看一下,重写。

以下是根据给定的模板,将模板转化为程序的代码示例:

```python
def find_demon_object():print("Finding demon object...")def find_occupy_loc():print("Finding occupation location...")def recognize_demands():print("Recognizing demands...")# 填充模板
def occupy(actor, method):actor_stack = []actor_stack.append(actor)actor_stack.append(method)# 执行要求find_demon_object()find_occupy_loc()recognize_demands()# 创建演员和占用方法实例
actor = Actor("John")
method = OccupationMethod("Dancing")# 演示演员如何表现某种兴趣的占用
occupy(actor, method)
```

这个程序完整地实现了模板中定义的演示演员如何表现某种兴趣的占用的过程。在这个程序中,我们定义了演员类和占用方法类,并使用这些类的实例来演示占用兴趣的过程。

相关文章:

全量知识系统问题及SmartChat给出的答复 之8 三套工具之3语法解析器 之1

Q19. 问题 : 解释单词解释单词occupied 的字典条目 (word-def occupiedinterest 5type EBsubclass SEBtemplate (script $Demonstrateactor nilobject nildemands nilmethod (scene $Occupyactor nillocation nil))fill (((actor) (top-of *actor-s…...

软考59-上午题-【数据库】-小结+杂题

一、杂题 真题1: 真题2: 真题3: 真题4: 真题5: 真题6: 真题7: 真题8: 二、数据库总结 考试题型: 1、选择题(6题,6分) 2、综合分析题…...

【ARM Trace32(劳特巴赫) 高级篇 21 -- SystemTrace ITM 使用介绍】

文章目录 SystemTrace ITMSystemTrace ITM 常用命令Trace Data AnalysisSystemTrace ITM CoreSight ITM (Instrumentation Trace Macrocell) provides the following information: Address, data value and instruction address for selected data cyclesInterrupt event info…...

Python系列(20)—— 循环语句

Python中的循环控制语句 一、引言 在Python编程中,循环是重复执行一段代码直到满足特定条件的基本结构。Python提供了多种循环控制语句,如For 和While ,以及用于控制循环流程的辅助语句,如Break、Continue和Pass。这些语句的组合…...

MYSQL的sql性能优化技巧

在编写 SQL 查询时,有一些技巧可以帮助你提高性能、简化查询并避免常见错误。以下是一些 MySQL 的写 SQL 技巧: 1. 使用索引 确保经常用于搜索、排序和连接的列上有索引。避免在索引列上使用函数或表达式,这会导致索引失效。使用 EXPLAIN 关…...

C#(C Sharp)学习笔记_数组的遍历【十】

输出数组内容 一般而言,我们会使用索引来输出指定的内容。 int[] arrayInt new int[] {4, 5, 2, 7, 9}; Console.WriteLine(arrayInt[3]);但这样只能输出指定的索引指向的内容,无法一下子查看数组全部的值。所以我们需要用到遍历方法输出所有元素。 …...

掌握未来技术:一站式深度学习学习平台体验!

介绍:深度学习是机器学习的一个子领域,它模仿人脑的分析和学习能力,通过构建和训练多层神经网络来学习数据的内在规律和表示层次。 深度学习的核心在于能够自动学习数据中的高层次特征,而无需人工进行复杂的特征工程。这种方法在图…...

Doris实战——特步集团零售数据仓库项目实践

目录 一、背景 二、总体架构 三、ETL实践 3.1 批量数据的导入 3.2 实时数据接入 3.3 数据加工 3.4 BI 查询 四、实时需求响应 五、其他经验 5.1 Doris BE内存溢出 5.2 SQL任务超时 5.3 删除语句不支持表达式 5.4 Drop 表闪回 六、未来展望 原文大佬的这篇Doris数…...

【python】(4)条件和循环

条件语句(Conditional Statements) 条件语句允许程序根据条件的不同执行不同的代码段。这是实现决策逻辑、分支和循环的基础。 if 语句 if 语句是最基本的条件语句,它用于执行仅当特定条件为真时才需要执行的代码块。 x = 10 if x > 5:print("x is greater than…...

Docker 的基本概念

Docker是一种开源的容器化平台,可以用于将应用程序和它们的依赖项打包到一个可移植的容器中。Docker容器可以在任何支持Docker的操作系统上运行,提供了隔离、可移植性和易于部署的优势。 Docker的基本概念包括以下几点: 镜像(Im…...

5.44 BCC工具之killsnoop.py解读

一,工具简介 工具用于追踪通过 kill() 系统调用发送的信号,并实时报告相关信息。 二,代码示例 #!/usr/bin/env pythonfrom __future__ import print_function from bcc import BPF from bcc.utils import ArgString, printb import argparse from time import strftime# …...

2023人机交互期末复习

考试题型及分值分布 1、选择题(10题、20分) 2、填空题(10题、20分) 3、判断题(可选、5题、10分) 4、解答题(5~6题、30分) 5、分析计算题(1~2题、20分) 注意&…...

Linux使用bcache 将SSD加速硬盘

前言 在Linux下,使用SSD为HDD加速,目前较为成熟的方案有:flashcache,enhanceIO,dm-cache,bcache等,多方面比较以后最终选择了bcache。 bcache 是一个 Linux 内核块层超速缓存。它允许使用一个或…...

大厂报价查询系统性能优化之道!

0 前言 机票查询系统,日均亿级流量,要求高吞吐,低延迟架构设计。提升缓存的效率以及实时计算模块长尾延迟,成为制约机票查询系统性能关键。本文介绍机票查询系统在缓存和实时计算两个领域的架构提升。 1 机票搜索服务概述 1.1 …...

Carbondata编译适配Spark3

背景 当前carbondata版本2.3.1-rc1中项目源码适配的spark版本最高为3.1,我们需要进行spark3.3版本的编译适配。 原始编译 linux系统下载源码后,安装maven3.6.3,然后执行: mvn -DskipTests -Pspark-3.1 clean package会遇到一些网络问题&a…...

数学建模【灰色关联分析】

一、灰色关联分析简介 一般的抽象系统,如社会系统、经济系统、农业系统、生态系统、教育系统等都包含有许多种因素,多种因素共同作用的结果决定了该系统的发展态势。人们常常希望知道在众多的因素中,哪些是主要因素,哪些是次要因素;哪些因素…...

Vue.js的单向数据流:让你的应用更清晰、更可控

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

IntelliJ IDEA社区版传统web开发环境搭建

前言 现在主流的开发框架是SpringBoot,使用maven配置的开发环境,网上有很多教程,这里记录一下传统Web开发项目(mvc架构的框架,如SSH)使用idea社区版的开发环境搭建。防止被人说都2024年了还用eclipse。 一、下载文件…...

arm-linux-gnueabi、arm-linux-gnueabihf 交叉编译器区别

1、arm-linux-gnueabi: 使用软件浮点(软浮点)。这意味着所有的浮点运算都将由软件库来处理,而不会利用硬件中的浮点运算单元。因此,生成的目标代码包含了对软件浮点库的调用。 2、arm-linux-gnueabihf: 使…...

什么是RS485

RS-485是一种串行通信标准,它是在1980年代由美国电子工业协会(EIA)制定的。它的全称是“Recommended Standard 485”,通常简称为RS-485。RS-485标准定义了信号的电气特性和信号线的布局,它主要用于工业环境RS-485是一种…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...